A PCA-aided EV-EGI Method for Registering Volumetric Datasets

Chun Dong, Timothy S Newman
{"title":"A PCA-aided EV-EGI Method for Registering Volumetric Datasets","authors":"Chun Dong, Timothy S Newman","doi":"10.1145/3517077.3517095","DOIUrl":null,"url":null,"abstract":"A method for volumetric dataset registration that utilizes principal component analysis (PCA) and volumetric extended Gaussian image (EGI)-based processing is presented. The method uses PCA to determine an initial coarse estimate of orientation difference between two volumetric datasets. The PCA is based on certain automatically selected (i.e., significant) voxels. The coarse estimate then is refined by a three-stage process that utilizes enhanced volumetric extended Gaussian images (EV-EGIs). These final EV-EGI stages also provide the translational component. The method's combination of steps allows for faster processing at roughly similar accuracy versus prior work based solely on EV-EGIs. Experimental comparisons with Globally optimal Iterative Closest Pointset (Go-ICP) registration are also reported and analyzed.","PeriodicalId":233686,"journal":{"name":"2022 7th International Conference on Multimedia and Image Processing","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Multimedia and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3517077.3517095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A method for volumetric dataset registration that utilizes principal component analysis (PCA) and volumetric extended Gaussian image (EGI)-based processing is presented. The method uses PCA to determine an initial coarse estimate of orientation difference between two volumetric datasets. The PCA is based on certain automatically selected (i.e., significant) voxels. The coarse estimate then is refined by a three-stage process that utilizes enhanced volumetric extended Gaussian images (EV-EGIs). These final EV-EGI stages also provide the translational component. The method's combination of steps allows for faster processing at roughly similar accuracy versus prior work based solely on EV-EGIs. Experimental comparisons with Globally optimal Iterative Closest Pointset (Go-ICP) registration are also reported and analyzed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种pca辅助EV-EGI方法配准体积数据集
提出了一种利用主成分分析(PCA)和基于体积扩展高斯图像(EGI)处理的体积数据集配准方法。该方法使用主成分分析法来确定两个体积数据集之间的方向差的初始粗略估计。PCA是基于某些自动选择的(即显著的)体素。然后通过利用增强体积扩展高斯图像(EV-EGIs)的三阶段过程对粗估计进行细化。这些最后的EV-EGI阶段也提供了转译组件。与之前仅基于EV-EGIs的工作相比,该方法的步骤组合允许以大致相似的精度更快地处理。本文还报道并分析了与全局最优迭代最近点集(Go-ICP)配准的实验比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Capsule Leakage Detection Based on Linear Array Camera Multi-Focus Image Fusion Based on Improved CNN Research on the Online Recognition of the Motion Image of the Adjacent Joints of the Lower Limbs Speckle suppression and texture preservation in optical coherence tomography images using variational image decomposition Structure design of the shutter with slider-crank mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1