Disparity Analysis for Three Floating Wind Turbine Aerodynamic Codes in Comparison

T. Sant, D. Micallef
{"title":"Disparity Analysis for Three Floating Wind Turbine Aerodynamic Codes in Comparison","authors":"T. Sant, D. Micallef","doi":"10.1115/iowtc2019-7509","DOIUrl":null,"url":null,"abstract":"\n This paper compares the predictions from three independent aerodynamic simulation tools modelling the time varying rotor thrust and shaft power of floating offshore wind turbines (FOWTs) under different sea wave conditions. These include a Blade-Element-Momentum (BEM) model, a Free-Wake Vortex model (FWM) and a Navier-Stokes based Actuator Disc (AD) model. The study is based on the NREL1 5 MW baseline FOWT installed on the OC4 DeepCWind semi-submersible platform. The rotor speed is maintained constant throughout the analysis, though different rotor tip speeds and sea wave heights and periods are considered. While the three aerodynamic models apply different approaches for modelling the wake, they are all based on a blade element theory (BET) approach for simulating the blade loads. A common set of static aerofoil data is used and corrections to the data for unsteady effects such as dynamic stall are ignored. Thus disparity between the predictions for the surging rotor is primarily due to the different numerical approaches used for modelling the FOWT wake. The time-averaged rotor thrust and power coefficients predicted by the three models were found to be in close agreement with one another at low tip speed ratios and the sea state was found to have marginal effect on these results. However, the disparity in such predictions between the three models was found to increase at high tip speed ratios, with the FWM and the AD models yielding the largest and smallest rotor thrust and power coefficients, respectively. Furthermore, the AD model was observed to exhibit the highest sensitivity to sea state, with a significant increase in the time averaged power coefficient being predicted at the most extreme wave condition.\n The amplitudes in the thrust and power expressed as a percentage of the corresponding time-averaged values estimated by the three aerodynamic models were found to be in close agreement with one another for the optimal and high tip speed ratios. However, at low tip speed ratios, the BEM predictions were significantly smaller than those estimated by the FWM and AD models.","PeriodicalId":131294,"journal":{"name":"ASME 2019 2nd International Offshore Wind Technical Conference","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 2nd International Offshore Wind Technical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/iowtc2019-7509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper compares the predictions from three independent aerodynamic simulation tools modelling the time varying rotor thrust and shaft power of floating offshore wind turbines (FOWTs) under different sea wave conditions. These include a Blade-Element-Momentum (BEM) model, a Free-Wake Vortex model (FWM) and a Navier-Stokes based Actuator Disc (AD) model. The study is based on the NREL1 5 MW baseline FOWT installed on the OC4 DeepCWind semi-submersible platform. The rotor speed is maintained constant throughout the analysis, though different rotor tip speeds and sea wave heights and periods are considered. While the three aerodynamic models apply different approaches for modelling the wake, they are all based on a blade element theory (BET) approach for simulating the blade loads. A common set of static aerofoil data is used and corrections to the data for unsteady effects such as dynamic stall are ignored. Thus disparity between the predictions for the surging rotor is primarily due to the different numerical approaches used for modelling the FOWT wake. The time-averaged rotor thrust and power coefficients predicted by the three models were found to be in close agreement with one another at low tip speed ratios and the sea state was found to have marginal effect on these results. However, the disparity in such predictions between the three models was found to increase at high tip speed ratios, with the FWM and the AD models yielding the largest and smallest rotor thrust and power coefficients, respectively. Furthermore, the AD model was observed to exhibit the highest sensitivity to sea state, with a significant increase in the time averaged power coefficient being predicted at the most extreme wave condition. The amplitudes in the thrust and power expressed as a percentage of the corresponding time-averaged values estimated by the three aerodynamic models were found to be in close agreement with one another for the optimal and high tip speed ratios. However, at low tip speed ratios, the BEM predictions were significantly smaller than those estimated by the FWM and AD models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三种浮式风力机气动规范对比差异分析
本文比较了不同海浪条件下浮动式海上风力机转子推力和轴功率随时间变化的三种独立气动仿真工具的预测结果。这些模型包括叶片-元素-动量(BEM)模型、自由尾流涡(FWM)模型和基于Navier-Stokes的执行器盘(AD)模型。该研究基于安装在OC4 DeepCWind半潜式平台上的NREL1 5 MW基线FOWT。在整个分析过程中,转子转速保持恒定,但考虑了不同的转子叶尖速度、海浪高度和周期。虽然这三种气动模型采用不同的方法来模拟尾迹,但它们都基于叶片单元理论(BET)方法来模拟叶片载荷。采用了一组常用的静态翼型数据,忽略了动态失速等非定常效应对数据的修正。因此,对喘振转子的预测之间的差异主要是由于用于模拟FOWT尾迹的不同数值方法。在低叶尖速比下,三种模型预测的时间平均旋翼推力和功率系数非常接近,而海况对这些结果的影响很小。然而,发现在高叶尖速比下,三种模型之间的这种预测差异增加,FWM和AD模型分别产生最大和最小的转子推力和功率系数。此外,AD模式对海况的敏感性最高,在最极端的海浪条件下预测的时间平均功率系数显著增加。在最佳和高叶尖速比下,推力和功率的幅值占三种气动模型估计的相应时间平均值的百分比非常接近。然而,在低叶尖速比下,边界元模型的预测结果明显小于FWM和AD模型的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Low Specific Mass, Free Floating Wind Energy Concept up to 40 MW Effect of Nacelle Drag on the Performance of a Floating Wind Turbine Platform Assessing the Impact of Integrating Energy Storage on the Dynamic Response of a Spar-Type Floating Wind Turbine Lifting Line Free Wake Vortex Filament Method for the Evaluation of Floating Offshore Wind Turbines: First Step — Validation for Fixed Wind Turbines Substructure Flexibility and Member-Level Load Capabilities for Floating Offshore Wind Turbines in OpenFAST
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1