ENIAD: A Reconfigurable Near-data Processing Architecture for Web-Scale AI-enriched Big Data Service

Jialiang Zhang, JingJane Li
{"title":"ENIAD: A Reconfigurable Near-data Processing Architecture for Web-Scale AI-enriched Big Data Service","authors":"Jialiang Zhang, JingJane Li","doi":"10.1109/HCS52781.2021.9567229","DOIUrl":null,"url":null,"abstract":"To meet the surging demands required by AI-enriched Big Data services, cloud vendors are turning toward domain specific accelerators for improved efficiency, scalability and performance. ENIAD, the first end-to-end infrastructure for AI-enriched Big Data serving in real time, accelerates both deep neural network inferencing and billion-scale indexing at the data-center scale. Exploiting near- data computation, reconfigurable computing and rapid/agile hardware deployment flow, ENIAD serves state-of-the-art, online built indexing service with high efficiency at low batch sizes. A high-performance, index (data)-adaptable FPGA soft processor is at the heart of the system and able to serve 10x larger index size with 14x lower latency compared to state-of-the-art CPU and GPU architectures.","PeriodicalId":246531,"journal":{"name":"2021 IEEE Hot Chips 33 Symposium (HCS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Hot Chips 33 Symposium (HCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HCS52781.2021.9567229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To meet the surging demands required by AI-enriched Big Data services, cloud vendors are turning toward domain specific accelerators for improved efficiency, scalability and performance. ENIAD, the first end-to-end infrastructure for AI-enriched Big Data serving in real time, accelerates both deep neural network inferencing and billion-scale indexing at the data-center scale. Exploiting near- data computation, reconfigurable computing and rapid/agile hardware deployment flow, ENIAD serves state-of-the-art, online built indexing service with high efficiency at low batch sizes. A high-performance, index (data)-adaptable FPGA soft processor is at the heart of the system and able to serve 10x larger index size with 14x lower latency compared to state-of-the-art CPU and GPU architectures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ENIAD:面向web级ai大数据服务的可重构近数据处理架构
为了满足人工智能大数据服务激增的需求,云供应商正在转向特定领域的加速器,以提高效率、可扩展性和性能。ENIAD是首个为人工智能大数据提供实时服务的端到端基础设施,可在数据中心规模上加速深度神经网络推理和十亿级索引。利用近数据计算、可重构计算和快速/敏捷的硬件部署流程,ENIAD以低批量规模高效率地提供最先进的在线构建索引服务。系统的核心是一个高性能、索引(数据)适应性强的FPGA软处理器,与最先进的CPU和GPU架构相比,它能够处理10倍大的索引大小,延迟降低14倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Million Core, Multi-Wafer AI Cluster Next Generation “Zen 3” Core Intel’s Hyperscale-Ready Infrastructure Processing Unit (IPU) Sapphire Rapids SambaNova SN10 RDU:Accelerating Software 2.0 with Dataflow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1