A comparison of a neural network and a model reference adaptive controller

R. Nordgren, P. Meckl
{"title":"A comparison of a neural network and a model reference adaptive controller","authors":"R. Nordgren, P. Meckl","doi":"10.1109/ICSYSE.1991.161113","DOIUrl":null,"url":null,"abstract":"A two-mode coupled compound pendulum is used to compare a computed-torque-type model reference adaptive controller and a feedforward neural network controller. A derived globally asymptotically stable adaptation law for the neural net controller shows that the back error propagation scheme used is, in some cases, also asymptotically stable. Computer simulations of the two controllers demonstrate their relative performance. This comparison shows that the derived adaptation law compares favorably with the performance of the model reference adaptive controller. It also lends insight into the required input signal frequency content in order to guarantee proper convergence of the neural network. The convergence and stability properties of the neural network when it is used as a feedforward computed-torque controller are analyzed.<<ETX>>","PeriodicalId":250037,"journal":{"name":"IEEE 1991 International Conference on Systems Engineering","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 1991 International Conference on Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSYSE.1991.161113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A two-mode coupled compound pendulum is used to compare a computed-torque-type model reference adaptive controller and a feedforward neural network controller. A derived globally asymptotically stable adaptation law for the neural net controller shows that the back error propagation scheme used is, in some cases, also asymptotically stable. Computer simulations of the two controllers demonstrate their relative performance. This comparison shows that the derived adaptation law compares favorably with the performance of the model reference adaptive controller. It also lends insight into the required input signal frequency content in order to guarantee proper convergence of the neural network. The convergence and stability properties of the neural network when it is used as a feedforward computed-torque controller are analyzed.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络与模型参考自适应控制器的比较
采用双模耦合复摆对计算转矩型模型参考自适应控制器和前馈神经网络控制器进行了比较。导出的神经网络控制器全局渐近稳定自适应律表明,所采用的反向误差传播方案在某些情况下也是渐近稳定的。计算机仿真验证了两种控制器的相对性能。结果表明,所推导的自适应律与模型参考自适应控制器的性能相当。它还提供了洞察所需的输入信号频率内容,以保证神经网络的适当收敛。分析了神经网络作为前馈计算转矩控制器时的收敛性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling and simulation of a heat exchanger Multidisciplinary modeling and design of a space system Robust stabilization of an aero-elastic system Inductive character learning and classification with genetic algorithms Determining bus arbitration policies and data transfer techniques for multiprocessor systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1