Observer-Based Robust Adaptive Tracking for Uncertain Robot Manipulators with External Force Disturbance Rejection

Abdul Rehan Khan Mohammed, Jiayi Zhang, Ahmad Bilal
{"title":"Observer-Based Robust Adaptive Tracking for Uncertain Robot Manipulators with External Force Disturbance Rejection","authors":"Abdul Rehan Khan Mohammed, Jiayi Zhang, Ahmad Bilal","doi":"10.1109/INDIN51773.2022.9976068","DOIUrl":null,"url":null,"abstract":"With the rapid growth in technology, the industries are fast-moving from the current automation standing into robotisation to increase productivity and deliver uniform quality. This requirement, in turn, has escalated the demand for robot control schemes. This paper proposes an observer-based robust adaptive tracking control scheme to minimise model uncertainties and external force disturbance effect to control the robot manipulator. No considerations are required for the upper bound of system uncertainties and disturbances in the control design. Plus, the speed of variation and the magnitude of unknown parameters and perturbations are assumed to have no limitations. The proposed control scheme uses an adaptation mechanism for a high gain nonlinear observer along with simplicity and universality properties to ensure robust tracking and make the system follow the desired reference model. Simulation results show that the proposed robust adaptive control scheme achieves boundedness for all the closed-loop signals and convergence of the tracking error.","PeriodicalId":359190,"journal":{"name":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN51773.2022.9976068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the rapid growth in technology, the industries are fast-moving from the current automation standing into robotisation to increase productivity and deliver uniform quality. This requirement, in turn, has escalated the demand for robot control schemes. This paper proposes an observer-based robust adaptive tracking control scheme to minimise model uncertainties and external force disturbance effect to control the robot manipulator. No considerations are required for the upper bound of system uncertainties and disturbances in the control design. Plus, the speed of variation and the magnitude of unknown parameters and perturbations are assumed to have no limitations. The proposed control scheme uses an adaptation mechanism for a high gain nonlinear observer along with simplicity and universality properties to ensure robust tracking and make the system follow the desired reference model. Simulation results show that the proposed robust adaptive control scheme achieves boundedness for all the closed-loop signals and convergence of the tracking error.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于观测器的不确定机械臂抗外力干扰鲁棒自适应跟踪
随着技术的快速发展,行业正在从目前的自动化状态快速转向机器人化,以提高生产率并提供统一的质量。这一要求反过来又增加了对机器人控制方案的需求。本文提出了一种基于观测器的鲁棒自适应跟踪控制方案,以减小模型的不确定性和外力干扰对机械臂的控制。在控制设计中不需要考虑系统不确定性和扰动的上界。此外,变化的速度和未知参数和扰动的大小被假定为没有限制。该控制方案采用了高增益非线性观测器的自适应机制,具有简单、通用性强的特点,保证了系统的鲁棒跟踪,使系统遵循期望的参考模型。仿真结果表明,所提出的鲁棒自适应控制方案实现了所有闭环信号的有界性和跟踪误差的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sentiment Analysis of Board Secretaries’ Q&R Data Offset Estimation Based on ARIMA-LSTM for Time Synchronization in Single Twisted Pair Ethernet Dynamic Task Offloading Approach for Task Delay Reduction in the IoT-enabled Fog Computing Systems Fuzzy PID Control for Multi-joint Robotic Arm Graph Attention Network for Financial Aspect-based Sentiment Classification with Contrastive Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1