Smart Sampling for Reduced and Representative Power System Scenario Selection

Xueqing Sun, Xinya Li, Sohom Datta, Xinda Ke, Qiuhua Huang, Renke Huang, Z. Hou
{"title":"Smart Sampling for Reduced and Representative Power System Scenario Selection","authors":"Xueqing Sun, Xinya Li, Sohom Datta, Xinda Ke, Qiuhua Huang, Renke Huang, Z. Hou","doi":"10.1109/PESGM48719.2022.9916835","DOIUrl":null,"url":null,"abstract":"With increasing penetration of renewable energy and active market participation, power system operation scenarios and patterns have increased exponentially. This has led to challenges in identifying a good subset of scenarios for routine planning, operation, and emerging machine learning applications. To address these challenges, we develop an approach integrating comprehensive exploratory data analyses and smart sampling techniques to identify and select a small subset of representative power system scenarios that maintain the coverage of system scenarios and operation envelope, therefore, leading to very efficient, yet representative studies and analysis. We propose a hierarchical Latin Hypercube Sampling (LHS) technique for smart sampling, which allows free-form distributions of system load and considers generator commitment status along with generation levels. A set of performance metrics are also defined for systematic evaluation of the adequacy and efficiency of the sampled cases. The developed approach and metrics are demonstrated using the Texas 2000 bus system in this paper and will be extended to the more complex real world systems such as Western Interconnect System.","PeriodicalId":388672,"journal":{"name":"2022 IEEE Power & Energy Society General Meeting (PESGM)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Power & Energy Society General Meeting (PESGM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM48719.2022.9916835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With increasing penetration of renewable energy and active market participation, power system operation scenarios and patterns have increased exponentially. This has led to challenges in identifying a good subset of scenarios for routine planning, operation, and emerging machine learning applications. To address these challenges, we develop an approach integrating comprehensive exploratory data analyses and smart sampling techniques to identify and select a small subset of representative power system scenarios that maintain the coverage of system scenarios and operation envelope, therefore, leading to very efficient, yet representative studies and analysis. We propose a hierarchical Latin Hypercube Sampling (LHS) technique for smart sampling, which allows free-form distributions of system load and considers generator commitment status along with generation levels. A set of performance metrics are also defined for systematic evaluation of the adequacy and efficiency of the sampled cases. The developed approach and metrics are demonstrated using the Texas 2000 bus system in this paper and will be extended to the more complex real world systems such as Western Interconnect System.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
简化和代表性电力系统场景选择的智能采样
随着可再生能源的日益普及和市场的积极参与,电力系统的运行场景和模式呈指数级增长。这给确定常规规划、操作和新兴机器学习应用的良好场景子集带来了挑战。为了应对这些挑战,我们开发了一种综合探索性数据分析和智能采样技术的方法,以识别和选择一小部分具有代表性的电力系统场景,这些场景保持了系统场景和运行范围的覆盖范围,因此,导致非常有效,但具有代表性的研究和分析。我们提出了一种分层拉丁超立方体采样(LHS)技术用于智能采样,该技术允许系统负载的自由形式分布,并考虑发电机的承诺状态以及发电水平。还定义了一组性能指标,用于系统地评估采样案例的充分性和效率。本文使用德克萨斯2000总线系统演示了开发的方法和指标,并将扩展到更复杂的现实世界系统,如西部互联系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Framework for the Operational Reliability Evaluation of Integrated Electric Power-Gas Networks The Human Factors of Public Safety Power Shutoff (PSPS) Decision-Making: Improving Decision Support Displays Data-Driven Model Reduction of the Moving Boundary Heat Pump Dynamic Model Privacy-Preserving Feasibility Assessment for P2P Energy Trading and Storage Integration Distribution System Planning for Growth in Residential Electric Vehicle Adoption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1