Optimal Actuation Strategies for Sensor/Actuator Networks

F. Thouin, R. Thommes, M. Coates
{"title":"Optimal Actuation Strategies for Sensor/Actuator Networks","authors":"F. Thouin, R. Thommes, M. Coates","doi":"10.1109/MOBIQ.2006.340389","DOIUrl":null,"url":null,"abstract":"Wireless sensor-actuator networks (SANETs), in which nodes perform actions (actuation) in response to sensor measurements and shared information, have great potential in medical and agricultural applications. In this paper, we focus on the problem of using distributed sensed data to design actuation strategies in order to elicit a desired response from the environment, whilst attempting to minimize the communication in the network. Our methodology is based on batch Q-learning; we describe a distributed approach for learning dyadic regression trees to estimate the Q-functions from collected data. Analysis and simulation indicate that substantial communication savings that can be achieved through distributed learning without significant performance deterioration. The simulations also reveal that the performance of our technique depends strongly on the amount of training data available","PeriodicalId":440604,"journal":{"name":"2006 Third Annual International Conference on Mobile and Ubiquitous Systems: Networking & Services","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Third Annual International Conference on Mobile and Ubiquitous Systems: Networking & Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MOBIQ.2006.340389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Wireless sensor-actuator networks (SANETs), in which nodes perform actions (actuation) in response to sensor measurements and shared information, have great potential in medical and agricultural applications. In this paper, we focus on the problem of using distributed sensed data to design actuation strategies in order to elicit a desired response from the environment, whilst attempting to minimize the communication in the network. Our methodology is based on batch Q-learning; we describe a distributed approach for learning dyadic regression trees to estimate the Q-functions from collected data. Analysis and simulation indicate that substantial communication savings that can be achieved through distributed learning without significant performance deterioration. The simulations also reveal that the performance of our technique depends strongly on the amount of training data available
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
传感器/执行器网络的最优驱动策略
无线传感器-致动器网络(SANETs),其中节点根据传感器测量和共享信息执行动作(致动),在医疗和农业应用中具有巨大潜力。在本文中,我们专注于使用分布式感测数据来设计驱动策略的问题,以便从环境中获得所需的响应,同时尝试最小化网络中的通信。我们的方法是基于批处理q学习;我们描述了一种分布式方法,用于学习二元回归树,以从收集的数据中估计q函数。分析和仿真表明,通过分布式学习可以实现大量的通信节省,而不会显著降低性能。仿真还表明,我们的技术性能在很大程度上取决于可用训练数据的数量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Service Composition for Mobile Personal Networks SIPCache: A Distributed SIP Location Service for Mobile Ad-Hoc Networks GrooveNet: A Hybrid Simulator for Vehicle-to-Vehicle Networks MURU: A Multi-Hop Routing Protocol for Urban Vehicular Ad Hoc Networks A Framework for Opportunistic Forwarding in Disconnected Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1