Learning Verb-Noun Relations to Improve Parsing

Andi Wu
{"title":"Learning Verb-Noun Relations to Improve Parsing","authors":"Andi Wu","doi":"10.3115/1119250.1119267","DOIUrl":null,"url":null,"abstract":"The verb-noun sequence in Chinese often creates ambiguities in parsing. These ambiguities can usually be resolved if we know in advance whether the verb and the noun tend to be in the verb-object relation or the modifier-head relation. In this paper, we describe a learning procedure whereby such knowledge can be automatically acquired. Using an existing (imperfect) parser with a chart filter and a tree filter, a large corpus, and the log-likelihood-ratio (LLR) algorithm, we were able to acquire verb-noun pairs which typically occur either in verb-object relations or modifier-head relations. The learned pairs are then used in the parsing process for disambiguation. Evaluation shows that the accuracy of the original parser improves significantly with the use of the automatically acquired knowledge.","PeriodicalId":403123,"journal":{"name":"Workshop on Chinese Language Processing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Chinese Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1119250.1119267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The verb-noun sequence in Chinese often creates ambiguities in parsing. These ambiguities can usually be resolved if we know in advance whether the verb and the noun tend to be in the verb-object relation or the modifier-head relation. In this paper, we describe a learning procedure whereby such knowledge can be automatically acquired. Using an existing (imperfect) parser with a chart filter and a tree filter, a large corpus, and the log-likelihood-ratio (LLR) algorithm, we were able to acquire verb-noun pairs which typically occur either in verb-object relations or modifier-head relations. The learned pairs are then used in the parsing process for disambiguation. Evaluation shows that the accuracy of the original parser improves significantly with the use of the automatically acquired knowledge.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习动名词关系提高句法分析能力
汉语的动名词序列在句法分析中经常产生歧义。如果我们事先知道动词和名词是动词-宾语关系还是修饰语-词头关系,这些歧义通常是可以解决的。在本文中,我们描述了一个学习过程,这样的知识可以自动获得。使用现有的(不完善的)解析器(带有图表过滤器和树过滤器)、大型语料库和对数似然比(LLR)算法,我们能够获得动词-名词对,这些动词-名词对通常出现在动词-宾语关系或修饰语-词头关系中。然后在解析过程中使用学习到的对来消除歧义。评估表明,使用自动获取的知识后,原解析器的准确性得到了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Building a Large Chinese Corpus Annotated with Semantic Dependency A Two-stage Statistical Word Segmentation System for Chinese Unsupervised Training for Overlapping Ambiguity Resolution in Chinese Word Segmentation Chinese Word Segmentation in MSR-NLP Annotating the Propositions in the Penn Chinese Treebank
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1