High-rate real-time single-frequency PPP for structural motion detection in horizontal directions

Mert Bezcioglu, Barış Karadeniz, C. O. Yigit, A. Dindar, B. Akpınar
{"title":"High-rate real-time single-frequency PPP for structural motion detection in horizontal directions","authors":"Mert Bezcioglu, Barış Karadeniz, C. O. Yigit, A. Dindar, B. Akpınar","doi":"10.4995/jisdm2022.2022.13907","DOIUrl":null,"url":null,"abstract":"Thanks to advances in receiver and software technology, the high-rate GPS (Global Positioning System) technique has become very important in monitoring the dynamic behavior of man-made structures in both real-time and post-missions. Real-time monitoring of the changes in the behavior of structures due to effects such as natural disasters, wind effect, traffic loading is critical in order to take precautions in time. In this study, the performance of the Real-Time Single Frequency Precision Point Positioning (RT SF-PPP) method based on IGS (International GNSS Service) RTS (real-time stream) products to capture the behavior of dynamic motions was evaluated. The performance of the SF RT-PPP method to detect dynamic behaviors was evaluated based on 20 Hz single frequency GPS observations obtained from shake table experiments, including 10 mm amplitude and different oscillation frequencies including 0.1, 0.6, 1.0, 2.0 and 3.0 Hz. RT SF-PPP results were compared with reference LVDT (Linear Variable Differential Transformer) and relative (or double difference) GPS positioning both frequency and time domain. Results show that the high-rate RT SF-PPP method can capture the frequencies and amplitudes of harmonic motions and it is comparable to LVDT and Relative GPS positioning solutions. These results show that the high-rate RT SF-PPP method can monitor earthquake-induced real-time vibration frequencies and amplitudes, which is especially important for early warning systems.","PeriodicalId":404487,"journal":{"name":"Proceedings of the 5th Joint International Symposium on Deformation Monitoring - JISDM 2022","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Joint International Symposium on Deformation Monitoring - JISDM 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/jisdm2022.2022.13907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Thanks to advances in receiver and software technology, the high-rate GPS (Global Positioning System) technique has become very important in monitoring the dynamic behavior of man-made structures in both real-time and post-missions. Real-time monitoring of the changes in the behavior of structures due to effects such as natural disasters, wind effect, traffic loading is critical in order to take precautions in time. In this study, the performance of the Real-Time Single Frequency Precision Point Positioning (RT SF-PPP) method based on IGS (International GNSS Service) RTS (real-time stream) products to capture the behavior of dynamic motions was evaluated. The performance of the SF RT-PPP method to detect dynamic behaviors was evaluated based on 20 Hz single frequency GPS observations obtained from shake table experiments, including 10 mm amplitude and different oscillation frequencies including 0.1, 0.6, 1.0, 2.0 and 3.0 Hz. RT SF-PPP results were compared with reference LVDT (Linear Variable Differential Transformer) and relative (or double difference) GPS positioning both frequency and time domain. Results show that the high-rate RT SF-PPP method can capture the frequencies and amplitudes of harmonic motions and it is comparable to LVDT and Relative GPS positioning solutions. These results show that the high-rate RT SF-PPP method can monitor earthquake-induced real-time vibration frequencies and amplitudes, which is especially important for early warning systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于水平方向结构运动检测的高速率实时单频PPP
由于接收机和软件技术的进步,高速率GPS(全球定位系统)技术在实时和任务后监测人造结构的动态行为方面变得非常重要。为了及时采取预防措施,实时监测结构在自然灾害、风力效应、交通荷载等影响下的行为变化至关重要。本研究对基于IGS (International GNSS Service) RTS (Real-Time stream)产品的实时单频精确点定位(RT SF-PPP)方法捕捉动态运动行为的性能进行了评估。基于10 mm幅值和0.1、0.6、1.0、2.0、3.0 Hz振荡频率的20 Hz单频GPS振动台观测数据,对SF RT-PPP方法的动态行为检测性能进行了评价。RT SF-PPP结果与参考LVDT(线性可变差动变压器)和相对(或双差分)GPS定位在频域和时域上进行了比较。结果表明,高速率RT SF-PPP方法可以捕获谐波运动的频率和幅值,可与LVDT和相对GPS定位方案相媲美。结果表明,高速率RT - SF-PPP方法可以实时监测地震诱发的振动频率和幅值,对预警系统具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Landslide monitoring using geotechnical, UAV, GNSS and MTInSAR instrumentation Evaluation of synthetic aperture radar interferometric techniques for monitoring of fast deformation caused by underground mining exploitation Long and close-range terrestrial photogrammetry for rocky landscape deformation monitoring PS-InSAR and UAV technology used in the stability study of Ankang expansive soil airport Deformation analysis in landslides NE Bulgaria using GNSS data complemented by InSAR for better interpretation results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1