Design methods for system-on-a-chip control codecs to enhance performance and reuse

J. Fisher, E. Murphy, S. Bibyk
{"title":"Design methods for system-on-a-chip control codecs to enhance performance and reuse","authors":"J. Fisher, E. Murphy, S. Bibyk","doi":"10.1109/NAECON.2000.894977","DOIUrl":null,"url":null,"abstract":"While the conventional concept of a signal coder-decoder (codec) is of a homogeneous device, such that the output decoding is simply an inverse of the input decoding, the heterogeneous codec developed in this paper decouples the input and output decoding; this variation generalizes the system. A control codec is an application of a heterogeneous codec, which replaces a traditional discrete analog control loop. This analog control loop includes an A/D (coder) plus a D/A (decoder), as well as other peripheral signal processing algorithms. Our application of the control codec is to improve the control of RF transponders in satellites. The codec is shown to have the ability to be optimized for a specific application as well as to be re-targeted to different fabrication lines. Because of the environmental demands on spaceborne devices several stable radiation-hardened SOI BiCMOS processes were used. The MIT Lincoln Labs AST Fully Depleted SOI deep-submicron process was also used as an example of re-targeting. Further, we develop the design for a control codec as an application of a general class of heterogeneous, process-independent codecs. The concepts for both a heterogeneous codec and a control codec are important additions to mixed-signal system design because they facilitate analog and mixed-signal block reuse. Our methodology implements a deliberate mixed-signal design decomposition, which enhances the reuse. This reuse is a major advancement in the development of evolvable hardware that uses both analog and digital signal processing in SoC applications.","PeriodicalId":171131,"journal":{"name":"Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2000.894977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

While the conventional concept of a signal coder-decoder (codec) is of a homogeneous device, such that the output decoding is simply an inverse of the input decoding, the heterogeneous codec developed in this paper decouples the input and output decoding; this variation generalizes the system. A control codec is an application of a heterogeneous codec, which replaces a traditional discrete analog control loop. This analog control loop includes an A/D (coder) plus a D/A (decoder), as well as other peripheral signal processing algorithms. Our application of the control codec is to improve the control of RF transponders in satellites. The codec is shown to have the ability to be optimized for a specific application as well as to be re-targeted to different fabrication lines. Because of the environmental demands on spaceborne devices several stable radiation-hardened SOI BiCMOS processes were used. The MIT Lincoln Labs AST Fully Depleted SOI deep-submicron process was also used as an example of re-targeting. Further, we develop the design for a control codec as an application of a general class of heterogeneous, process-independent codecs. The concepts for both a heterogeneous codec and a control codec are important additions to mixed-signal system design because they facilitate analog and mixed-signal block reuse. Our methodology implements a deliberate mixed-signal design decomposition, which enhances the reuse. This reuse is a major advancement in the development of evolvable hardware that uses both analog and digital signal processing in SoC applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
片上系统控制编解码器的设计方法,以提高性能和重用性
传统的信号编解码器(codec)是一种同质设备,因此输出解码只是输入解码的逆,而本文开发的异构编解码器将输入和输出解码解耦;这种变化使系统一般化。控制编解码器是一种异构编解码器的应用,它取代了传统的离散模拟控制回路。该模拟控制回路包括A/D(编码器)和D/A(解码器),以及其他外围信号处理算法。控制编解码器的应用是为了改善卫星射频应答器的控制。该编解码器显示具有针对特定应用进行优化的能力,以及重新针对不同的制造线。由于星载设备对环境的要求,采用了几种稳定的抗辐射SOI BiCMOS工艺。麻省理工学院林肯实验室的AST完全耗尽SOI深亚微米工艺也被用作重靶向的例子。此外,我们开发了控制编解码器的设计,作为一类异构的、与进程无关的编解码器的应用。异构编解码器和控制编解码器的概念都是对混合信号系统设计的重要补充,因为它们促进了模拟和混合信号块的重用。我们的方法实现了经过深思熟虑的混合信号设计分解,从而提高了复用性。这种重用是在SoC应用中使用模拟和数字信号处理的可进化硬件开发中的重大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Convergence of socio-economic and technology factors in creating opportunities for a new workforce model Technology refreshment strategy and plan for application in military systems a "How-to systems development process" and linkage with CAIV A near optimal call admission control with genetic algorithm for multimedia services in wireless/mobile networks Measurement of dynamic characteristics of structure Exploiting RMS time-frequency structure for data compression in emitter location systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1