An enhanced leakage-aware scheduler for dynamically reconfigurable FPGAs

Jen-Wei Hsieh, Yuan-Hao Chang, Wei-Li Lee
{"title":"An enhanced leakage-aware scheduler for dynamically reconfigurable FPGAs","authors":"Jen-Wei Hsieh, Yuan-Hao Chang, Wei-Li Lee","doi":"10.1109/ASPDAC.2011.5722270","DOIUrl":null,"url":null,"abstract":"The FPGAs (Field-Programmable Gate Array) are popular in hardware designs and even hardware/software co-designs. Due to the advance of manufacturing technologies, leakage power has become an important issue in the design of modern FPGAs. In particular, the partially dynamical reconfigurable FP-GAs allow the latency between FPGA reconfiguration and task execution for the performance consideration. However, this latency introduces unnecessary leakage power called leakage waste. In this work, we propose a leakage-aware scheduling algorithm to minimize the leakage waste without increasing the schedule length of tasks. In this algorithm, a priority dispatcher with a split-aware placement is proposed to reduce the scheduling complexity with considering the hardware constraints of FPGAs. A series of experiments based on synthetic designs demonstrates that the proposed algorithm could effectively reduce leakage waste with limited sacrifices on the task schedulability.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2011.5722270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The FPGAs (Field-Programmable Gate Array) are popular in hardware designs and even hardware/software co-designs. Due to the advance of manufacturing technologies, leakage power has become an important issue in the design of modern FPGAs. In particular, the partially dynamical reconfigurable FP-GAs allow the latency between FPGA reconfiguration and task execution for the performance consideration. However, this latency introduces unnecessary leakage power called leakage waste. In this work, we propose a leakage-aware scheduling algorithm to minimize the leakage waste without increasing the schedule length of tasks. In this algorithm, a priority dispatcher with a split-aware placement is proposed to reduce the scheduling complexity with considering the hardware constraints of FPGAs. A series of experiments based on synthetic designs demonstrates that the proposed algorithm could effectively reduce leakage waste with limited sacrifices on the task schedulability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于动态可重构fpga的增强泄漏感知调度器
fpga(现场可编程门阵列)在硬件设计甚至硬件/软件协同设计中都很流行。由于制造技术的进步,泄漏功率已成为现代fpga设计中的一个重要问题。特别是,出于性能考虑,部分动态可重构的FP-GAs允许FPGA重构和任务执行之间的延迟。然而,这种延迟引入了不必要的泄漏功率,称为泄漏浪费。在这项工作中,我们提出了一种泄漏感知调度算法,在不增加任务调度长度的情况下最大限度地减少泄漏浪费。该算法在考虑fpga硬件约束的情况下,提出了一种具有分块感知的优先级调度器,以降低调度复杂度。基于综合设计的一系列实验表明,该算法可以有效地减少泄漏浪费,同时对任务可调度性的影响有限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Register pressure aware scheduling for high level synthesis Robust and efficient baseband receiver design for MB-OFDM UWB system Area-efficient FPGA logic elements: Architecture and synthesis Utilizing high level design information to speed up post-silicon debugging Device-parameter estimation with on-chip variation sensors considering random variability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1