Experimental comparison between an “information based” MPPT algorithm and standard P&O in both partial shading and uniform illumination

P. Guerriero, F. Di Napoli, V. d’Alessandro, S. Daliento
{"title":"Experimental comparison between an “information based” MPPT algorithm and standard P&O in both partial shading and uniform illumination","authors":"P. Guerriero, F. Di Napoli, V. d’Alessandro, S. Daliento","doi":"10.1109/ICCEP.2015.7177555","DOIUrl":null,"url":null,"abstract":"In this paper a maximum power point tracking algorithm able to drive the operating point of a partially shaded photovoltaic system toward the global maximum power point is analyzed. The algorithm exploits detailed information about the electrical parameters of all solar panels forming the solar system gained by means of a distributed sensor network, which monitors the operation of the solar field at a very high granularity level. Data collected by the monitoring system are exploited to reconstruct the power voltage curve of the photovoltaic system, thus recognizing the presence of multiple local maxima and their exact voltage position. Experiments performed on a pilot solar filed equipped with the sensor network evidence the reliability of the analyzed approach. A convergence time of about 2.5 s was achieved independently of illumination conditions and, in case of partial shadowing, an increment of 90 W (50% more) with respect to a standard tracking algorithm.","PeriodicalId":423870,"journal":{"name":"2015 International Conference on Clean Electrical Power (ICCEP)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Clean Electrical Power (ICCEP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEP.2015.7177555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper a maximum power point tracking algorithm able to drive the operating point of a partially shaded photovoltaic system toward the global maximum power point is analyzed. The algorithm exploits detailed information about the electrical parameters of all solar panels forming the solar system gained by means of a distributed sensor network, which monitors the operation of the solar field at a very high granularity level. Data collected by the monitoring system are exploited to reconstruct the power voltage curve of the photovoltaic system, thus recognizing the presence of multiple local maxima and their exact voltage position. Experiments performed on a pilot solar filed equipped with the sensor network evidence the reliability of the analyzed approach. A convergence time of about 2.5 s was achieved independently of illumination conditions and, in case of partial shadowing, an increment of 90 W (50% more) with respect to a standard tracking algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
“基于信息的”MPPT算法与标准P&O算法在部分遮光和均匀光照下的实验比较
本文分析了一种能够将部分遮阳光伏系统的工作点向全局最大功率点驱动的最大功率点跟踪算法。该算法利用分布式传感器网络获得的关于组成太阳能系统的所有太阳能电池板的电气参数的详细信息,该网络以非常高的粒度级别监测太阳能场的运行。利用监测系统采集的数据重构光伏系统的电力电压曲线,从而识别出多个局部极值的存在及其准确的电压位置。在安装了传感器网络的太阳能试验场上进行的实验证明了所分析方法的可靠性。与光照条件无关的收敛时间约为2.5 s,在部分阴影的情况下,相对于标准跟踪算法,收敛时间增加了90 W(50%以上)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A single input dual buck-boost output reconfigurable converter for distributed generation Overhead transmission lines dynamic line rating estimation in WAMS environments Fast estimation of MPPs in mismatched PV arrays based on lossless model Frontiers of photovoltaic technology: A review Risk-based probabilistic approach to estimate power system security in the Sicilian context
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1