A study on PID intelligent optimization based on radial basis function neural networks

Wei Wu, Sheng Zhong, Guopeng Zhou
{"title":"A study on PID intelligent optimization based on radial basis function neural networks","authors":"Wei Wu, Sheng Zhong, Guopeng Zhou","doi":"10.1109/CECNET.2013.6703271","DOIUrl":null,"url":null,"abstract":"Application of Neural Networks (NN) control receives worthy results in approximation to unknown dynamic systems. This paper presents an intelligent controller based on radial basis function neural networks as an improvement model from traditional PID control for the novelty: construct a radial basis function neural network to identify the uncertainly load disturbance online thus adjust parameters timely with self-adapting ability. The simulation verifies the effectiveness of this control strategy.","PeriodicalId":427418,"journal":{"name":"2013 3rd International Conference on Consumer Electronics, Communications and Networks","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 3rd International Conference on Consumer Electronics, Communications and Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CECNET.2013.6703271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Application of Neural Networks (NN) control receives worthy results in approximation to unknown dynamic systems. This paper presents an intelligent controller based on radial basis function neural networks as an improvement model from traditional PID control for the novelty: construct a radial basis function neural network to identify the uncertainly load disturbance online thus adjust parameters timely with self-adapting ability. The simulation verifies the effectiveness of this control strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于径向基函数神经网络的PID智能优化研究
应用神经网络(NN)控制对未知动态系统进行逼近,得到了有价值的结果。本文提出了一种基于径向基函数神经网络的智能控制器,作为传统PID控制的改进模型,构造径向基函数神经网络在线识别不确定负载扰动,及时调整参数,使其具有自适应能力。仿真结果验证了该控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traffic congestion reduce mechanism by adaptive road routing recommendation in smart city The model research based on cooperative communication and location with double circular antenna array for emergency environment Research on analyzing sentiment of texts based on semantic comprehension Quasi-orthogonal space-time block code with Givens rotation for OFDM system Salt-and-pepper noise removal based on nonlocal mean filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1