Sabrina: Modeling and Visualization of Financial Data over Time with Incremental Domain Knowledge

Alessio Arleo, J. Sorger, Christos Tsigkanos, Chao Jia, R. Leite, Ilir Murturi, Manfred Klaffenböck, S. Dustdar, M. Wimmer, S. Miksch
{"title":"Sabrina: Modeling and Visualization of Financial Data over Time with Incremental Domain Knowledge","authors":"Alessio Arleo, J. Sorger, Christos Tsigkanos, Chao Jia, R. Leite, Ilir Murturi, Manfred Klaffenböck, S. Dustdar, M. Wimmer, S. Miksch","doi":"10.1109/VISUAL.2019.8933598","DOIUrl":null,"url":null,"abstract":"Investment planning requires knowledge of the financial landscape on a large scale, both in terms of geo-spatial and industry sector distribution. There is plenty of data available, but it is scattered across heterogeneous sources (newspapers, open data, etc.), which makes it difficult for financial analysts to understand the big picture. In this paper, we present Sabrina, a financial data analysis and visualization approach that incorporates a pipeline for the generation of firm-to-firm financial transaction networks. The pipeline is capable of fusing the ground truth on individual firms in a region with (incremental) domain knowledge on general macroscopic aspects of the economy. Sabrina unites these heterogeneous data sources within a uniform visual interface that enables the visual analysis process. In a user study with three domain experts, we illustrate the usefulness of Sabrina, which eases their analysis process.","PeriodicalId":192801,"journal":{"name":"2019 IEEE Visualization Conference (VIS)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visualization Conference (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2019.8933598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Investment planning requires knowledge of the financial landscape on a large scale, both in terms of geo-spatial and industry sector distribution. There is plenty of data available, but it is scattered across heterogeneous sources (newspapers, open data, etc.), which makes it difficult for financial analysts to understand the big picture. In this paper, we present Sabrina, a financial data analysis and visualization approach that incorporates a pipeline for the generation of firm-to-firm financial transaction networks. The pipeline is capable of fusing the ground truth on individual firms in a region with (incremental) domain knowledge on general macroscopic aspects of the economy. Sabrina unites these heterogeneous data sources within a uniform visual interface that enables the visual analysis process. In a user study with three domain experts, we illustrate the usefulness of Sabrina, which eases their analysis process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
萨布丽娜:随着时间的推移,金融数据的建模和可视化与增量领域知识
投资规划需要了解大规模的金融格局,包括地理空间和行业部门分布。有大量可用的数据,但它们分散在不同的来源(报纸、公开数据等),这使得金融分析师很难理解整体情况。在本文中,我们介绍了Sabrina,这是一种金融数据分析和可视化方法,它包含了一个用于生成企业对企业金融交易网络的管道。该管道能够将一个地区单个公司的基本真相与经济宏观方面的(增量)领域知识融合在一起。Sabrina将这些异构数据源统一在一个统一的可视化界面中,从而实现可视化分析过程。在与三位领域专家的用户研究中,我们说明了Sabrina的有用性,它简化了他们的分析过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EasyPZ.js: Interaction Binding for Pan and Zoom Visualizations Uncovering Data Landscapes through Data Reconnaissance and Task Wrangling Disentangled Representation of Data Distributions in Scatterplots RuleVis: Constructing Patterns and Rules for Rule-Based Models Interactive Bicluster Aggregation in Bipartite Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1