A proposal of unit watershed for water management based on the interaction of surface water and groundwater

Gyoo-Bum Kim, Hwang Chanik
{"title":"A proposal of unit watershed for water management based on the interaction of surface water and groundwater","authors":"Gyoo-Bum Kim, Hwang Chanik","doi":"10.3741/JKWRA.2020.53.S-1.755","DOIUrl":null,"url":null,"abstract":"In South Korea, 850 standard watersheds and 7,807 KRF catchment areas have been used as basic maps for water resources policy establishment, however it becomes necessary to set up new standard maps with a more appropriate scale for the integrated managements of surface water-groundwater as well as water quantity-quality in the era of integrated water management. Since groundwater has a slow flow velocity and also has 3-D flow properties compared to surface water, the sub-catchment size is more effective than the regional watershed for the evaluation of surface water-groundwater interaction. The KRF catchment area, which has averagely a smaller area than the standard watershed, is similar to the sub-catchment area that generally includes the first-order or second-order tributaries. Some KRF catchment areas, which are based on the surface reach, are too small or large in a wide plain or high mountain area. Therefore, it is necessary to revise the existing KRF area if being used as a unit area for integrated management of surface-water and groundwater. A unit watershed with a KRF area of about 5 to 15 km2 can be effective as a basic unit for water management of local government considering a tributary composition and the location of groundwater wells, and as well it can be used as a basic tool for water demand-supply evaluation, hydrological observation system establishment, judgment of groundwater permission through a total quantity management system, pollution assessment, and prioritizing water policy, and etc.","PeriodicalId":224359,"journal":{"name":"Journal of Korea Water Resources Association","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Korea Water Resources Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3741/JKWRA.2020.53.S-1.755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In South Korea, 850 standard watersheds and 7,807 KRF catchment areas have been used as basic maps for water resources policy establishment, however it becomes necessary to set up new standard maps with a more appropriate scale for the integrated managements of surface water-groundwater as well as water quantity-quality in the era of integrated water management. Since groundwater has a slow flow velocity and also has 3-D flow properties compared to surface water, the sub-catchment size is more effective than the regional watershed for the evaluation of surface water-groundwater interaction. The KRF catchment area, which has averagely a smaller area than the standard watershed, is similar to the sub-catchment area that generally includes the first-order or second-order tributaries. Some KRF catchment areas, which are based on the surface reach, are too small or large in a wide plain or high mountain area. Therefore, it is necessary to revise the existing KRF area if being used as a unit area for integrated management of surface-water and groundwater. A unit watershed with a KRF area of about 5 to 15 km2 can be effective as a basic unit for water management of local government considering a tributary composition and the location of groundwater wells, and as well it can be used as a basic tool for water demand-supply evaluation, hydrological observation system establishment, judgment of groundwater permission through a total quantity management system, pollution assessment, and prioritizing water policy, and etc.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于地表水和地下水相互作用的单位流域水管理建议
在韩国,850个标准流域和7807个KRF集水区已被用作水资源政策制定的基础地图,但在水资源综合管理时代,地表水-地下水综合管理和水量-水质综合管理需要建立更合适比例尺的新标准地图。与地表水相比,地下水流速较慢,且具有三维流动特性,因此子流域尺度比区域流域尺度更能有效地评价地表水-地下水相互作用。KRF集水区面积平均小于标准流域,与一般包括一级或二级支流的子集水区相似。在广阔的平原或高山地区,一些以地表河段为基础的KRF集水区太小或太大。因此,如果将现有的KRF地区作为地表水和地下水综合管理的单位面积使用,则有必要对其进行修改。一个KRF面积约为5 ~ 15 km2的单元流域,可以有效地作为地方政府考虑支流组成和地下水水井位置进行水资源管理的基本单元,也可以作为水资源供需评价、水文观测系统建立、总量管理系统地下水许可判断、污染评价、优先供水政策等的基本工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
期刊最新文献
Spatial distribution and uncertainty of daily rainfall for return level using hierarchical Bayesian modeling combined with climate and geographical information Data collection strategy for building rainfall-runoff LSTM model predicting daily runoff Evaluation of satellite-based evapotranspiration and soil moisture data applicability in Jeju Island Development of the spatiotemporal vulnerability assessment method for groundwater resources management at mountainous regions in Korea considering surface water-groundwater interactions Relationship between gross primary production and environmental variables during drought season in South Korea
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1