Ultimate boundedness of stochastic Cohen-Grossberg neural networks with delays

Qinghua Zhou, Li Wan, Guo Cheng
{"title":"Ultimate boundedness of stochastic Cohen-Grossberg neural networks with delays","authors":"Qinghua Zhou, Li Wan, Guo Cheng","doi":"10.1109/ICSAI.2012.6223628","DOIUrl":null,"url":null,"abstract":"The ultimate boundedness is one of foundational concepts, which plays an important role in investigating the global asymptotic stability, its control and synchronization for dynamical systems. The ultimate boundedness of stochastic Cohen-Grossberg neural networks with time-varying delays is investigated. By employing Lyapunov method and matrix technique, some novel results and criteria on stochastic ultimate boundedness are derived. Finally, a numerical example is given to illustrate the correctness and effectiveness of our theoretical results.","PeriodicalId":164945,"journal":{"name":"2012 International Conference on Systems and Informatics (ICSAI2012)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Systems and Informatics (ICSAI2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI.2012.6223628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The ultimate boundedness is one of foundational concepts, which plays an important role in investigating the global asymptotic stability, its control and synchronization for dynamical systems. The ultimate boundedness of stochastic Cohen-Grossberg neural networks with time-varying delays is investigated. By employing Lyapunov method and matrix technique, some novel results and criteria on stochastic ultimate boundedness are derived. Finally, a numerical example is given to illustrate the correctness and effectiveness of our theoretical results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机时滞Cohen-Grossberg神经网络的极限有界性
极限有界性是研究动力系统全局渐近稳定性及其控制与同步问题的基本概念之一。研究了时变时滞随机Cohen-Grossberg神经网络的最终有界性。利用李雅普诺夫方法和矩阵技术,得到了关于随机极限有界性的一些新的结果和判据。最后通过数值算例说明了理论结果的正确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
About feedback vaccination rules for a true-mass action-type SEIR epidemic model Enhanced accuracy of position based on Multi-mode location system Formal verification of signature monitoring mechanisms using model checking How to cope with the evolution of classic software during the test generation based on CPN Soil moisture quantitative study of the Nanhui tidal flat in the Yangtze River Estuary by using ENVISAT ASAR data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1