LAXARY: A Trustworthy Explainable Twitter Analysis Model for Post-Traumatic Stress Disorder Assessment

M. A. U. Alam, Dhawal Kapadia
{"title":"LAXARY: A Trustworthy Explainable Twitter Analysis Model for Post-Traumatic Stress Disorder Assessment","authors":"M. A. U. Alam, Dhawal Kapadia","doi":"10.1109/SMARTCOMP50058.2020.00069","DOIUrl":null,"url":null,"abstract":"Veteran mental health is a significant national problem as large number of veterans are returning from the recent war in Iraq and continued military presence in Afghanistan. While significant existing works have investigated twitter posts-based Post Traumatic Stress Disorder (PTSD) assessment using blackbox machine learning techniques, these frameworks cannot be trusted by the clinicians due to the lack of clinical explainabil-ity. To obtain the trust of clinicians, we explore the big question, can twitter posts provide enough information to fill up clinical PTSD assessment surveys that have been traditionally trusted by clinicians? To answer the above question, we propose, LAXARY (Linguistic Analysis-based Exaplainable Inquiry) model, a novel Explainable Artificial Intelligent (XAI) model to detect and represent PTSD assessment of twitter users using a modified Linguistic Inquiry and Word Count (LIWC) analysis. First, we employ clinically validated survey tools for collecting clinical PTSD assessment data from real twitter users and develop a PTSD Linguistic Dictionary using the PTSD assessment survey results. Then, we use the PTSD Linguistic Dictionary along with machine learning model to fill up the survey tools towards detecting PTSD status and its intensity of corresponding twitter users. Our experimental evaluation on 210 clinically validated veteran twitter users provides promising accuracies of both PTSD classification and its intensity estimation. We also evaluate our developed PTSD Linguistic Dictionary's reliability and validity.","PeriodicalId":346827,"journal":{"name":"2020 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP50058.2020.00069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Veteran mental health is a significant national problem as large number of veterans are returning from the recent war in Iraq and continued military presence in Afghanistan. While significant existing works have investigated twitter posts-based Post Traumatic Stress Disorder (PTSD) assessment using blackbox machine learning techniques, these frameworks cannot be trusted by the clinicians due to the lack of clinical explainabil-ity. To obtain the trust of clinicians, we explore the big question, can twitter posts provide enough information to fill up clinical PTSD assessment surveys that have been traditionally trusted by clinicians? To answer the above question, we propose, LAXARY (Linguistic Analysis-based Exaplainable Inquiry) model, a novel Explainable Artificial Intelligent (XAI) model to detect and represent PTSD assessment of twitter users using a modified Linguistic Inquiry and Word Count (LIWC) analysis. First, we employ clinically validated survey tools for collecting clinical PTSD assessment data from real twitter users and develop a PTSD Linguistic Dictionary using the PTSD assessment survey results. Then, we use the PTSD Linguistic Dictionary along with machine learning model to fill up the survey tools towards detecting PTSD status and its intensity of corresponding twitter users. Our experimental evaluation on 210 clinically validated veteran twitter users provides promising accuracies of both PTSD classification and its intensity estimation. We also evaluate our developed PTSD Linguistic Dictionary's reliability and validity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LAXARY:创伤后应激障碍评估的可信可解释Twitter分析模型
退伍军人的心理健康是一个重大的全国性问题,因为大量退伍军人正在从最近的伊拉克战争和继续在阿富汗的军事存在中返回。虽然现有的大量工作已经使用黑箱机器学习技术研究了基于twitter帖子的创伤后应激障碍(PTSD)评估,但由于缺乏临床可解释性,这些框架不能被临床医生信任。为了获得临床医生的信任,我们探讨了一个大问题,推特帖子是否能提供足够的信息来填写临床医生传统上信任的PTSD临床评估调查?为了回答上述问题,我们提出了基于语言分析的可解释探究(LAXARY)模型,这是一种新型的可解释人工智能(XAI)模型,该模型使用改进的语言探究和字数统计(LIWC)分析来检测和表示twitter用户的PTSD评估。首先,我们采用临床验证的调查工具,从真实twitter用户中收集临床PTSD评估数据,并根据PTSD评估调查结果编写PTSD语言词典。然后,我们使用PTSD语言词典和机器学习模型来填充调查工具,以检测相应twitter用户的PTSD状态及其强度。我们对210名经过临床验证的退伍军人twitter用户进行了实验评估,结果显示PTSD分类和强度估计都有很好的准确性。我们还评估了我们开发的PTSD语言词典的信度和效度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Industry 4.0 Solutions for Interoperability: a Use Case about Tools and Tool Chains in the Arrowhead Tools Project A NodeRED-based dashboard to deploy pipelines on top of IoT infrastructure Enhanced Support of LWM2M in Low Power and Lossy Networks Simulating Smart Campus Applications in Edge and Fog Computing A Scalable Distributed System for Precision Irrigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1