Bottleneck RGB Features for Tea Clones Identification

R. S. Yuwana, Endang Suryawati, A. Heryana, Vicky Zilvan, D. Rohdiana, Heri Syahrian K
{"title":"Bottleneck RGB Features for Tea Clones Identification","authors":"R. S. Yuwana, Endang Suryawati, A. Heryana, Vicky Zilvan, D. Rohdiana, Heri Syahrian K","doi":"10.1109/ISRITI48646.2019.9034667","DOIUrl":null,"url":null,"abstract":"As each tea clone may produce different quality of tea, it is important to have them identified in the field. Tea Clones identification is one application of ICT technologies in agriculture. Tea clones may have very similar characteristics between them, required to have a good amount of data to train a machine learning-based classifiers to have good performances. However, we may have to deal with a small amount of data in many cases. To overcome this, we propose to use an encoder-based feature reduction to produce RGB-based bottleneck features. The output features are then fed into an SVM classifier. We evaluate our features on the classification of two tea clones of the Gambung Assamica (GMB) series. Our experimental results show that our proposed features achieve better performance than using full dimensions RGB.","PeriodicalId":367363,"journal":{"name":"2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISRITI48646.2019.9034667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

As each tea clone may produce different quality of tea, it is important to have them identified in the field. Tea Clones identification is one application of ICT technologies in agriculture. Tea clones may have very similar characteristics between them, required to have a good amount of data to train a machine learning-based classifiers to have good performances. However, we may have to deal with a small amount of data in many cases. To overcome this, we propose to use an encoder-based feature reduction to produce RGB-based bottleneck features. The output features are then fed into an SVM classifier. We evaluate our features on the classification of two tea clones of the Gambung Assamica (GMB) series. Our experimental results show that our proposed features achieve better performance than using full dimensions RGB.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
茶叶克隆识别的瓶颈RGB特征
由于每个茶叶无性系可能生产出不同质量的茶叶,因此在田间鉴定它们是很重要的。茶叶无性系鉴定是信息通信技术在农业中的应用之一。茶叶克隆之间可能具有非常相似的特征,需要有大量的数据来训练基于机器学习的分类器以具有良好的性能。然而,在许多情况下,我们可能不得不处理少量数据。为了克服这个问题,我们建议使用基于编码器的特征缩减来产生基于rgb的瓶颈特征。然后将输出特征输入支持向量机分类器。我们评价了甘邦阿萨姆卡(GMB)系列的两个茶无性系的分类特征。实验结果表明,我们提出的特征比使用全维RGB具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TrendiTex: An Intelligent Fashion Designer Pair Extraction of Aspect and Implicit Opinion Word based on its Co-occurrence in Corpus of Bahasa Indonesia Parameter Tuning of G-mapping SLAM (Simultaneous Localization and Mapping) on Mobile Robot with Laser-Range Finder 360° Sensor ISRITI 2019 Committees Network Architecture Design of Indonesia Research and Education Network (IDREN)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1