Text identification in noisy document images using Markov random model

Yefeng Zheng, Huiping Li, D. Doermann
{"title":"Text identification in noisy document images using Markov random model","authors":"Yefeng Zheng, Huiping Li, D. Doermann","doi":"10.1109/ICDAR.2003.1227734","DOIUrl":null,"url":null,"abstract":"In this paper we address the problem of the identification of text from noisy documents. We segment and identify handwriting from machine printed text because 1) handwriting in a document often indicates corrections, additions or other supplemental information that should be treated differently from the main body or body content, and 2) the segmentation and recognition techniques for machine printed text and handwriting are significantly different. Our novelty is that we treat noise as a separate class and model noise based on selected features. Trained Fisher classifiers are used to identify machine printed text and handwriting from noise. We further exploit context to refine the classification. A Markov random field (MRF) based approach is used to model the geometrical structure of the printed text, handwriting and noise to rectify the mis-classification. Experimental results show our approach is promising and robust, and can significantly improve the page segmentation results in noise documents.","PeriodicalId":249193,"journal":{"name":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2003.1227734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

In this paper we address the problem of the identification of text from noisy documents. We segment and identify handwriting from machine printed text because 1) handwriting in a document often indicates corrections, additions or other supplemental information that should be treated differently from the main body or body content, and 2) the segmentation and recognition techniques for machine printed text and handwriting are significantly different. Our novelty is that we treat noise as a separate class and model noise based on selected features. Trained Fisher classifiers are used to identify machine printed text and handwriting from noise. We further exploit context to refine the classification. A Markov random field (MRF) based approach is used to model the geometrical structure of the printed text, handwriting and noise to rectify the mis-classification. Experimental results show our approach is promising and robust, and can significantly improve the page segmentation results in noise documents.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于马尔可夫随机模型的噪声文档图像文本识别
在本文中,我们解决了从噪声文档中识别文本的问题。我们从机器打印文本中分割和识别手写,因为1)文档中的手写通常表示更正、添加或其他补充信息,这些信息应该与主体或主体内容区别对待,2)机器打印文本和手写的分割和识别技术有很大不同。我们的新颖之处在于,我们将噪声视为一个单独的类别,并基于选定的特征对噪声进行建模。经过训练的Fisher分类器用于从噪声中识别机器打印的文本和手写。我们进一步利用上下文来改进分类。基于马尔可夫随机场(MRF)的方法对打印文本、手写和噪声的几何结构进行建模,以纠正错误分类。实验结果表明,该方法具有良好的鲁棒性,可以显著改善噪声文档中的页面分割效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of imperfect OCR on part-of-speech tagging Writer identification using innovative binarised features of handwritten numerals Word searching in CCITT group 4 compressed document images Exploiting reliability for dynamic selection of classi .ers by means of genetic algorithms Investigation of off-line Japanese signature verification using a pattern matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1