Semi-Automatic Repair of Over-Constrained Models for Combinatorial Robustness Testing

Konrad Fögen, H. Lichter
{"title":"Semi-Automatic Repair of Over-Constrained Models for Combinatorial Robustness Testing","authors":"Konrad Fögen, H. Lichter","doi":"10.1109/APSEC48747.2019.00024","DOIUrl":null,"url":null,"abstract":"Combinatorial robustness testing is an approach to generate separate test inputs for positive and negative test scenarios. The test model is enriched with semantic information to distinguish valid from invalid values and value combinations. Unfortunately, it is easy to create over-constrained models and invalid values or invalid value combinations do not appear in the final test suite. In this paper, we extend previous work on manual repair and develop a technique to semi-automatically repair over-constrained models. The technique is evaluated with benchmark models and the results indicate a small computational overhead.","PeriodicalId":325642,"journal":{"name":"2019 26th Asia-Pacific Software Engineering Conference (APSEC)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 26th Asia-Pacific Software Engineering Conference (APSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSEC48747.2019.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Combinatorial robustness testing is an approach to generate separate test inputs for positive and negative test scenarios. The test model is enriched with semantic information to distinguish valid from invalid values and value combinations. Unfortunately, it is easy to create over-constrained models and invalid values or invalid value combinations do not appear in the final test suite. In this paper, we extend previous work on manual repair and develop a technique to semi-automatically repair over-constrained models. The technique is evaluated with benchmark models and the results indicate a small computational overhead.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
组合鲁棒性检验中过度约束模型的半自动修复
组合稳健性测试是一种为正测试和负测试场景生成单独测试输入的方法。该测试模型丰富了语义信息,以区分有效值和无效值以及值的组合。不幸的是,很容易创建过度约束的模型,并且无效值或无效值组合不会出现在最终的测试套件中。在本文中,我们扩展了先前的人工修复工作,并开发了一种半自动修复超约束模型的技术。使用基准模型对该技术进行了评估,结果表明计算开销很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Duplicate Questions in Stack Overflow via Deep Learning Approaches An Algebraic Approach to Modeling and Verifying Policy-Driven Smart Devices in IoT Systems Integrating Static Program Analysis Tools for Verifying Cautions of Microcontroller How Compact Will My System Be? A Fully-Automated Way to Calculate LoC Reduced by Clone Refactoring Neural Comment Generation for Source Code with Auxiliary Code Classification Task
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1