Far field array processing with neural networks

Brigitte Colnet, J. Haton
{"title":"Far field array processing with neural networks","authors":"Brigitte Colnet, J. Haton","doi":"10.1109/ICASSP.1994.389665","DOIUrl":null,"url":null,"abstract":"Source localisation is among the most important steps in array processing. The authors present a neuromimetic approach in signal processing. A set of neural networks is used to find the azimuth of one or several sources impinging on a linear array of equally spaced sensors. Each network in this set is specialised to determine if there is an emitter in a given angular sector. Thus a neural network has a specific architecture suited to detect and enhance the signal coming from the angular sector it is associated with. The performances of this method on real underwater signals confirm the encouraging results obtained on simulation tests.<<ETX>>","PeriodicalId":290798,"journal":{"name":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1994.389665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Source localisation is among the most important steps in array processing. The authors present a neuromimetic approach in signal processing. A set of neural networks is used to find the azimuth of one or several sources impinging on a linear array of equally spaced sensors. Each network in this set is specialised to determine if there is an emitter in a given angular sector. Thus a neural network has a specific architecture suited to detect and enhance the signal coming from the angular sector it is associated with. The performances of this method on real underwater signals confirm the encouraging results obtained on simulation tests.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的远场阵列处理
源定位是数组处理中最重要的步骤之一。作者提出了一种神经模拟信号处理方法。一组神经网络被用来寻找一个或几个源的方位冲击到一个等间距的线性阵列的传感器。该集合中的每个网络都专门用于确定给定角扇区中是否存在发射器。因此,神经网络具有适合于检测和增强来自与之相关联的角扇区的信号的特定结构。该方法对真实水下信号的处理效果与仿真试验结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new cumulant based parameter estimation method for noncausal autoregressive systems Using Gaussian mixture modeling in speech recognition An evaluation of cross-language adaptation for rapid HMM development in a new language Unsupervised segmentation of radar images using wavelet decomposition and cumulants Improving speech recognition performance via phone-dependent VQ codebooks and adaptive language models in SPHINX-II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1