DGDI: A Dataset for Detecting Glomeruli on Renal Direct Immunofluorescence

Kun Zhao, Yuliang Tang, Teng Zhang, J. Carvajal, Daniel F. Smith, A. Wiliem, Peter Hobson, A. Jennings, B. Lovell
{"title":"DGDI: A Dataset for Detecting Glomeruli on Renal Direct Immunofluorescence","authors":"Kun Zhao, Yuliang Tang, Teng Zhang, J. Carvajal, Daniel F. Smith, A. Wiliem, Peter Hobson, A. Jennings, B. Lovell","doi":"10.1109/DICTA.2018.8615769","DOIUrl":null,"url":null,"abstract":"With the growing popularity of whole slide scanners, there is a high demand to develop computer aided diagnostic techniques for this new digitized pathology data. The ability to extract effective information from digital slides, which serve as fundamental representations of the prognostic data patterns or structures, provides promising opportunities to improve the accuracy of automatic disease diagnosis. The recent advances in computer vision have shown that Convolutional Neural Networks (CNNs) can be used to analyze digitized pathology images providing more consistent and objective information to the pathologists. In this paper, to advance the progress in developing computer aided diagnosis systems for renal direct immunofluorescence test, we introduce a new benchmark dataset for Detecting Glomeruli on renal Direct Immunofluorescence (DGDI). To build the baselines, we investigate various CNN-based detectors on DGDI. Experiments demonstrate that DGDI well represents the challenges of renal direct immunofluorescence image analysis and encourages the progress in developing new approaches for understanding renal disease.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

With the growing popularity of whole slide scanners, there is a high demand to develop computer aided diagnostic techniques for this new digitized pathology data. The ability to extract effective information from digital slides, which serve as fundamental representations of the prognostic data patterns or structures, provides promising opportunities to improve the accuracy of automatic disease diagnosis. The recent advances in computer vision have shown that Convolutional Neural Networks (CNNs) can be used to analyze digitized pathology images providing more consistent and objective information to the pathologists. In this paper, to advance the progress in developing computer aided diagnosis systems for renal direct immunofluorescence test, we introduce a new benchmark dataset for Detecting Glomeruli on renal Direct Immunofluorescence (DGDI). To build the baselines, we investigate various CNN-based detectors on DGDI. Experiments demonstrate that DGDI well represents the challenges of renal direct immunofluorescence image analysis and encourages the progress in developing new approaches for understanding renal disease.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DGDI:肾直接免疫荧光检测肾小球的数据集
随着全切片扫描仪的日益普及,对这种新型数字化病理数据的计算机辅助诊断技术提出了很高的要求。从数字载玻片中提取有效信息的能力,作为预后数据模式或结构的基本表示,为提高自动疾病诊断的准确性提供了有希望的机会。计算机视觉的最新进展表明,卷积神经网络(cnn)可以用于分析数字化病理图像,为病理学家提供更加一致和客观的信息。为了促进肾脏直接免疫荧光检测计算机辅助诊断系统的发展,我们介绍了一个新的肾脏直接免疫荧光检测肾小球的基准数据集。为了建立基线,我们在DGDI上研究了各种基于cnn的检测器。实验表明,DGDI很好地代表了肾脏直接免疫荧光图像分析的挑战,并鼓励开发新的方法来了解肾脏疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Satellite Multi-Vehicle Tracking under Inconsistent Detection Conditions by Bilevel K-Shortest Paths Optimization Classification of White Blood Cells using Bispectral Invariant Features of Nuclei Shape Impulse-Equivalent Sequences and Arrays Impact of MRI Protocols on Alzheimer's Disease Detection Strided U-Net Model: Retinal Vessels Segmentation using Dice Loss
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1