{"title":"How to tolerate half less one Byzantine nodes in practical distributed systems","authors":"M. Correia, N. Neves, P. Veríssimo","doi":"10.1109/RELDIS.2004.1353018","DOIUrl":null,"url":null,"abstract":"The application of dependability concepts and techniques to the design of secure distributed systems is raising a considerable amount of interest in both communities under the designation of intrusion tolerance. However, practical intrusion-tolerant replicated systems based on the state machine approach (SMA) can handle at most f Byzantine components out of a total of n = 3f + 1, which is the maximum resilience in asynchronous systems. This paper extends the normal asynchronous system with a special distributed oracle called TTCB. Using this extended system we manage to implement an intrusion-tolerant service based on the SMA with only 2f + 1 replicas. Albeit a few other papers in the literature present intrusion-tolerant services with this approach, this is the first time the number of replicas is reduced from 3f + 1 to 2f + 1. Another interesting characteristic of the described service is a low time complexity.","PeriodicalId":142327,"journal":{"name":"Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems, 2004.","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"158","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RELDIS.2004.1353018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 158
Abstract
The application of dependability concepts and techniques to the design of secure distributed systems is raising a considerable amount of interest in both communities under the designation of intrusion tolerance. However, practical intrusion-tolerant replicated systems based on the state machine approach (SMA) can handle at most f Byzantine components out of a total of n = 3f + 1, which is the maximum resilience in asynchronous systems. This paper extends the normal asynchronous system with a special distributed oracle called TTCB. Using this extended system we manage to implement an intrusion-tolerant service based on the SMA with only 2f + 1 replicas. Albeit a few other papers in the literature present intrusion-tolerant services with this approach, this is the first time the number of replicas is reduced from 3f + 1 to 2f + 1. Another interesting characteristic of the described service is a low time complexity.