Aeshna Tanveer, Nimra Afzaal, S. Murawwat, Sabaina Aleem, Fatima Sayeda
{"title":"Mitigating Flight Performance Errors in UAVs through Hybrid MRAC controller","authors":"Aeshna Tanveer, Nimra Afzaal, S. Murawwat, Sabaina Aleem, Fatima Sayeda","doi":"10.1109/ETECTE55893.2022.10007241","DOIUrl":null,"url":null,"abstract":"This research explores modelling, design, and control of quadcopters, focusing on mitigating flight performance errors that compensate the performance of Unmanned Aerial Vehicles (UAVs) performance. It also explores a mathematical model for simulation and a control of rotary-wing UAV systems. Moreover, it describes a design methodology for a micro-sized UAV in CAD software. Adaptive control techniques are then used to design four sub-controllers of UAVs named Altitude Control, Roll, Pitch, and Yaw. It is basically a remodeling of classical Model Reference Adaptive Control (MRAC) scheme, which is named Hybrid MRAC, ensuring a better rise time performance than classical MRAC. The controllers are then analyzed in the presence of disturbances to prove that adaptive controllers are more robust to external disturbances than non-adaptive ones. Lastly for state estimation, an Extended Kalman Filter (EKF) is applied to account for real-world sensor noises that further degrade the performance of UAV","PeriodicalId":131572,"journal":{"name":"2022 International Conference on Emerging Trends in Electrical, Control, and Telecommunication Engineering (ETECTE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Emerging Trends in Electrical, Control, and Telecommunication Engineering (ETECTE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETECTE55893.2022.10007241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This research explores modelling, design, and control of quadcopters, focusing on mitigating flight performance errors that compensate the performance of Unmanned Aerial Vehicles (UAVs) performance. It also explores a mathematical model for simulation and a control of rotary-wing UAV systems. Moreover, it describes a design methodology for a micro-sized UAV in CAD software. Adaptive control techniques are then used to design four sub-controllers of UAVs named Altitude Control, Roll, Pitch, and Yaw. It is basically a remodeling of classical Model Reference Adaptive Control (MRAC) scheme, which is named Hybrid MRAC, ensuring a better rise time performance than classical MRAC. The controllers are then analyzed in the presence of disturbances to prove that adaptive controllers are more robust to external disturbances than non-adaptive ones. Lastly for state estimation, an Extended Kalman Filter (EKF) is applied to account for real-world sensor noises that further degrade the performance of UAV