Wafer Map Defect Patterns Classification using Deep Selective Learning

M. Alawieh, D. Boning, D. Pan
{"title":"Wafer Map Defect Patterns Classification using Deep Selective Learning","authors":"M. Alawieh, D. Boning, D. Pan","doi":"10.1109/DAC18072.2020.9218580","DOIUrl":null,"url":null,"abstract":"With the continuous drive toward integrated circuits scaling, efficient yield analysis is becoming more crucial yet more challenging. In this paper, we propose a novel methodology for wafer map defect pattern classification using deep selective learning. Our proposed approach features an integrated reject option where the model chooses to abstain from predicting a class label when misclassification risk is high. Thus, providing a trade-off between prediction coverage and misclassification risk. This selective learning scheme allows for new defect class detection, concept shift detection, and resource allocation. Besides, and to address the class imbalance problem in the wafer map classification, we propose a data augmentation framework built around a convolutional auto-encoder model for synthetic sample generation. The efficacy of our proposed approach is demonstrated on the WM-811k industrial dataset where it achieves 94% accuracy under full coverage and 99% with selective learning while successfully detecting new defect types.","PeriodicalId":428807,"journal":{"name":"2020 57th ACM/IEEE Design Automation Conference (DAC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 57th ACM/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC18072.2020.9218580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

With the continuous drive toward integrated circuits scaling, efficient yield analysis is becoming more crucial yet more challenging. In this paper, we propose a novel methodology for wafer map defect pattern classification using deep selective learning. Our proposed approach features an integrated reject option where the model chooses to abstain from predicting a class label when misclassification risk is high. Thus, providing a trade-off between prediction coverage and misclassification risk. This selective learning scheme allows for new defect class detection, concept shift detection, and resource allocation. Besides, and to address the class imbalance problem in the wafer map classification, we propose a data augmentation framework built around a convolutional auto-encoder model for synthetic sample generation. The efficacy of our proposed approach is demonstrated on the WM-811k industrial dataset where it achieves 94% accuracy under full coverage and 99% with selective learning while successfully detecting new defect types.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度选择学习的晶圆图缺陷模式分类
随着集成电路规模的不断扩大,有效的良率分析变得越来越重要,但也越来越具有挑战性。本文提出了一种基于深度选择学习的晶圆图缺陷模式分类方法。我们提出的方法具有一个集成的拒绝选项,当错误分类风险很高时,模型选择放弃预测类别标签。因此,在预测覆盖率和错误分类风险之间提供了一种权衡。这种选择性学习方案允许新的缺陷类检测、概念转移检测和资源分配。此外,为了解决晶圆图分类中的类不平衡问题,我们提出了一个基于卷积自编码器模型的数据增强框架,用于合成样本的生成。我们提出的方法的有效性在WM-811k工业数据集上得到了证明,在完全覆盖下达到94%的准确率,在成功检测新缺陷类型的同时,选择性学习达到99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FCNNLib: An Efficient and Flexible Convolution Algorithm Library on FPGAs AXI HyperConnect: A Predictable, Hypervisor-level Interconnect for Hardware Accelerators in FPGA SoC Pythia: Intellectual Property Verification in Zero-Knowledge Reuse-trap: Re-purposing Cache Reuse Distance to Defend against Side Channel Leakage Navigator: Dynamic Multi-kernel Scheduling to Improve GPU Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1