Extension-Aware Automated Testing Based on Imperative Predicates

Nima Dini, Cagdas Yelen, Miloš Gligorić, S. Khurshid
{"title":"Extension-Aware Automated Testing Based on Imperative Predicates","authors":"Nima Dini, Cagdas Yelen, Miloš Gligorić, S. Khurshid","doi":"10.1109/ICST.2019.00013","DOIUrl":null,"url":null,"abstract":"Bounded exhaustive testing (BET) techniques have been shown to be effective for detecting faults in software. BET techniques based on imperative predicates, enumerate all test inputs up to the given bounds such that each test input satisfies the properties encoded by the predicate. The search space is bounded by the user, who specifies the number of objects of each type and the list of values for each field of each type. To optimize the search, existing techniques detect isomorphic instances and record accessed fields during the execution of a predicate. However, these optimizations are extension-unaware, i.e., they do not speed up the search when the predicate is modified, say due to a fix or additional properties. We present a technique, named iGen, that speeds up test generation when imperative predicates are extended. iGen memoizes intermediate results of a test generation and reuses the results in a future search – even when the new search space differs from the old space. We integrated our technique in two BET tools (one for Java and one for Python) and evaluated these implementations with several data structure pairs, including two pairs from the Standard Java Library. Our results show that iGen speeds up test generation by up to 46.59x for the Java tool and up to 49.47x for the Python tool. Additionally, we show that the speedup obtained by iGen increases for larger test instances.","PeriodicalId":446827,"journal":{"name":"2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICST.2019.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Bounded exhaustive testing (BET) techniques have been shown to be effective for detecting faults in software. BET techniques based on imperative predicates, enumerate all test inputs up to the given bounds such that each test input satisfies the properties encoded by the predicate. The search space is bounded by the user, who specifies the number of objects of each type and the list of values for each field of each type. To optimize the search, existing techniques detect isomorphic instances and record accessed fields during the execution of a predicate. However, these optimizations are extension-unaware, i.e., they do not speed up the search when the predicate is modified, say due to a fix or additional properties. We present a technique, named iGen, that speeds up test generation when imperative predicates are extended. iGen memoizes intermediate results of a test generation and reuses the results in a future search – even when the new search space differs from the old space. We integrated our technique in two BET tools (one for Java and one for Python) and evaluated these implementations with several data structure pairs, including two pairs from the Standard Java Library. Our results show that iGen speeds up test generation by up to 46.59x for the Java tool and up to 49.47x for the Python tool. Additionally, we show that the speedup obtained by iGen increases for larger test instances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于命令式谓词的扩展感知自动化测试
有界穷举测试(BET)技术已被证明是检测软件故障的有效方法。基于命令式谓词的BET技术将所有测试输入枚举到给定的边界,以便每个测试输入满足谓词编码的属性。搜索空间由用户限定,用户指定每种类型的对象数量和每种类型的每个字段的值列表。为了优化搜索,现有技术检测同构实例并在谓词执行期间记录访问的字段。然而,这些优化是与扩展无关的,也就是说,当谓词被修改时(比如由于修复或附加属性),它们不会加快搜索速度。我们提出了一种名为iGen的技术,它可以在扩展命令式谓词时加速测试生成。iGen记忆测试生成的中间结果,并在未来的搜索中重用结果——即使新的搜索空间不同于旧的搜索空间。我们将我们的技术集成到两个BET工具中(一个用于Java,一个用于Python),并使用几个数据结构对评估这些实现,其中包括来自标准Java库的两个数据结构对。我们的结果表明,对于Java工具,iGen将测试生成速度提高了46.59倍,对于Python工具,iGen将测试生成速度提高了49.47倍。此外,我们表明iGen获得的加速对于更大的测试实例会增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parallel Many-Objective Search for Unit Tests SeqFuzzer: An Industrial Protocol Fuzzing Framework from a Deep Learning Perspective Classifying False Positive Static Checker Alarms in Continuous Integration Using Convolutional Neural Networks Automated Function Assessment in Driving Scenarios Techniques for Evolution-Aware Runtime Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1