Partial Attention CenterNet for Bottom-Up Human Pose Estimation

Jiahua Wu, Hyo Jong Lee
{"title":"Partial Attention CenterNet for Bottom-Up Human Pose Estimation","authors":"Jiahua Wu, Hyo Jong Lee","doi":"10.1109/CSCI54926.2021.00042","DOIUrl":null,"url":null,"abstract":"The typical bottom-up human pose estimation methods can be divided into two steps, keypoint detection and grouping. The traditional keypoint regression-based methods exploit an effective backbone (like HRNet) and different prediction heads to acquire the body center and body joint. Then they utilize the offset between the body center and body joint to figure out the grouping task. In this paper, we first propose a body branch module and keypoint attention module to improve keypoint detection and keypoint regression. In body branch module, we exploit a multi-branch structure for keypoint detection and keypoint regression. Each branch represents a part of human body. In keypoint attention module, two simple yet reliable pooling layers are adopted to extract the attention areas of different kinds of keypoints. Combining these two modules, we propose a Partial Attention CenterNet for multi-person human pose estimation. The proposed method outperforms the traditional keypoint regression-based methods. Experiments have demonstrated the obvious performance improvements on COCO dataset brought by the introduced components.","PeriodicalId":206881,"journal":{"name":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI54926.2021.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The typical bottom-up human pose estimation methods can be divided into two steps, keypoint detection and grouping. The traditional keypoint regression-based methods exploit an effective backbone (like HRNet) and different prediction heads to acquire the body center and body joint. Then they utilize the offset between the body center and body joint to figure out the grouping task. In this paper, we first propose a body branch module and keypoint attention module to improve keypoint detection and keypoint regression. In body branch module, we exploit a multi-branch structure for keypoint detection and keypoint regression. Each branch represents a part of human body. In keypoint attention module, two simple yet reliable pooling layers are adopted to extract the attention areas of different kinds of keypoints. Combining these two modules, we propose a Partial Attention CenterNet for multi-person human pose estimation. The proposed method outperforms the traditional keypoint regression-based methods. Experiments have demonstrated the obvious performance improvements on COCO dataset brought by the introduced components.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自底向上人体姿态估计的部分注意力中心网络
典型的自下而上的人体姿态估计方法分为关键点检测和分组两个步骤。传统的基于关键点回归的方法利用一个有效的主干(如HRNet)和不同的预测头来获取身体中心和身体关节。然后利用身体中心和身体关节之间的偏移量来计算分组任务。在本文中,我们首先提出了身体分支模块和关键点关注模块来改进关键点检测和关键点回归。在主体分支模块中,我们采用多分支结构进行关键点检测和关键点回归。每个分支代表人体的一部分。关键点关注模块采用两个简单可靠的池化层提取不同类型关键点的关注区域。结合这两个模块,我们提出了一个用于多人姿态估计的局部注意力中心网络。该方法优于传统的基于关键点回归的方法。实验表明,引入的成分对COCO数据集的性能有明显的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Remote Video Surveillance Effects of Social Distancing Intention, Affective Risk Perception, and Cabin Fever Syndrome on Perceived Value of E-learning : Type of submission: Late Breaking Paper / Most relevant symposium: CSCI-ISED Cybersecurity Integration: Deploying Critical Infrastructure Security and Resilience Topics into the Undergraduate Curriculum Distributed Algorithms for k-Coverage in Mobile Sensor Networks Software Development Methodologies for Virtual Reality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1