ESTIMASI MODEL REGRESI SEMIPARAMETRIK SPLINE TRUNCATED MENGGUNAKAN METODE MAXIMUM LIKELIHOOD ESTIMATION (MLE)

N. Y. Adrianingsih, A. Dani
{"title":"ESTIMASI MODEL REGRESI SEMIPARAMETRIK SPLINE TRUNCATED MENGGUNAKAN METODE MAXIMUM LIKELIHOOD ESTIMATION (MLE)","authors":"N. Y. Adrianingsih, A. Dani","doi":"10.34312/jjps.v2i2.10255","DOIUrl":null,"url":null,"abstract":"Regression modeling with a semiparametric approach is a combination of two approaches, namely the parametric regression approach and the nonparametric regression approach. The semiparametric regression model can be used if the response variable has a known relationship pattern with one or more of the predictor variables used, but with the other predictor variables the relationship pattern cannot be known with certainty. The purpose of this research is to examine the estimation form of the semiparametric spline truncated regression model. Suppose that random error is assumed to be independent, identical, and normally distributed with zero mean and variance , then using this assumption, we can estimate the semiparametric spline truncated regression model using the Maximum Likelihood Estimation (MLE) method.  Based on the results, the estimation results of the semiparametric spline truncated regression model were obtained  p=(inv(M'M)) M'y ","PeriodicalId":315674,"journal":{"name":"Jambura Journal of Probability and Statistics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jambura Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34312/jjps.v2i2.10255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Regression modeling with a semiparametric approach is a combination of two approaches, namely the parametric regression approach and the nonparametric regression approach. The semiparametric regression model can be used if the response variable has a known relationship pattern with one or more of the predictor variables used, but with the other predictor variables the relationship pattern cannot be known with certainty. The purpose of this research is to examine the estimation form of the semiparametric spline truncated regression model. Suppose that random error is assumed to be independent, identical, and normally distributed with zero mean and variance , then using this assumption, we can estimate the semiparametric spline truncated regression model using the Maximum Likelihood Estimation (MLE) method.  Based on the results, the estimation results of the semiparametric spline truncated regression model were obtained  p=(inv(M'M)) M'y 
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半参数回归建模是参数回归和非参数回归两种方法的结合。如果响应变量与所使用的一个或多个预测变量具有已知的关系模式,则可以使用半参数回归模型,但对于其他预测变量,关系模式无法确定。本研究的目的是检验半参数样条截断回归模型的估计形式。假设随机误差独立、相同、正态分布,均值和方差均为零,利用这一假设,我们可以用极大似然估计(MLE)方法对半参数样条截断回归模型进行估计。在此基础上,得到了半参数样条截断回归模型的估计结果p=(inv(M M)) M'y
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparing Logistic Regression and Support Vector Machine in Breast Cancer Problem Prediksi Jumlah Wisatawan Menggunakan Metode Random Forest, Single Exponential Smoothing dan Double Exponential Smoothing di Provinsi NTB Perbandingan Fuzzy Time Series Lee untuk Meramalkan Nilai Tukar Petani di Provinsi Gorontalo Implementasi Metode Runtun Waktu dalam Pemodelan Total Harga Alat Kedokteran dan Kesehatan Analisis Faktor-Faktor Penghambat Penyelesaian Studi Mahasiswa Program Studi Matematika Universitas Sulawesi Barat Menggunakan PLS-SEM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1