Comparing regression using artificial neural nets and intelligent hybrid method to achieve the higher learning preferences of students

José Sergio Magdaleno-Palencia, M. Castañón-Puga, J. R. Castro, J. Valdez, Bogart Yail Márquez
{"title":"Comparing regression using artificial neural nets and intelligent hybrid method to achieve the higher learning preferences of students","authors":"José Sergio Magdaleno-Palencia, M. Castañón-Puga, J. R. Castro, J. Valdez, Bogart Yail Márquez","doi":"10.1109/ICETC.2014.6998898","DOIUrl":null,"url":null,"abstract":"This work compares an artificial neural net and computational intelligence hybrid method to describe the learning preferences of students from survey data. The final purpose is to give learning objects to students according to their learning style. We used a database form survey with answers from 1042 computational engineers students from two public Universities in Tijuana, Mexico. We also used the Fuzzy Inference System (FIS); the FIS is configured from survey data using the ANFIS method to discover the set up and fuzzy if-then rules of the system. The FIS describe learning objects preferences for learning styles; then we compared the results from ANN versus ANFIS, in order to retrieve the highest results to build learning objects.","PeriodicalId":102315,"journal":{"name":"2014 International Conference on Education Technologies and Computers (ICETC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Education Technologies and Computers (ICETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETC.2014.6998898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work compares an artificial neural net and computational intelligence hybrid method to describe the learning preferences of students from survey data. The final purpose is to give learning objects to students according to their learning style. We used a database form survey with answers from 1042 computational engineers students from two public Universities in Tijuana, Mexico. We also used the Fuzzy Inference System (FIS); the FIS is configured from survey data using the ANFIS method to discover the set up and fuzzy if-then rules of the system. The FIS describe learning objects preferences for learning styles; then we compared the results from ANN versus ANFIS, in order to retrieve the highest results to build learning objects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人工神经网络与智能混合方法对比回归,实现学生更高的学习偏好
本文比较了人工神经网络和计算智能的混合方法来描述学生从调查数据的学习偏好。最终目的是根据学生的学习风格给他们提供学习对象。我们使用了一个数据库形式的调查,其中有来自墨西哥蒂华纳两所公立大学的1042名计算机工程专业学生的答案。我们还使用了模糊推理系统(FIS);使用ANFIS方法从调查数据中配置FIS,以发现系统的设置和模糊if-then规则。FIS描述了学习对象对学习风格的偏好;然后我们比较了ANN和ANFIS的结果,以便检索最高的结果来构建学习对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling the relationships between perceptions about technology and attitudes toward computers A validated multidisciplinary study on the assessment of SMS messages as a mean to improve self-efficacy in university students Social media effect inside university communication: a Mexican case Interactive assessment learning environment system under IMS-QTI specification ERP in higher education: a deeper look on developing countries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1