Sterilization process stages estimation for an autoclave using logistic regression models

L. Ángel, J. Viola, M. Vega, R. Restrepo
{"title":"Sterilization process stages estimation for an autoclave using logistic regression models","authors":"L. Ángel, J. Viola, M. Vega, R. Restrepo","doi":"10.1109/STSIVA.2016.7743337","DOIUrl":null,"url":null,"abstract":"This paper presents a methodology for an autoclave sterilization process stages estimation using logistic regression models. The Autoclave sterilization process has four stages Pre-Vacuum, Rising Temperature, Sterilizing and Vacuum-Drying, which are classified employing the one vs all algorithm. The logistic regression model employed as variables the Autoclave absolute temperature and pressure. Data from 35 sterilization process were employed to find the logistic regression coefficients. As performance indexes, the precision, coverage and harmonic mean were employed. Results shown that the classification algorithm reached an efficiency of 81% to estimate the sterilization process stages.","PeriodicalId":373420,"journal":{"name":"2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2016.7743337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a methodology for an autoclave sterilization process stages estimation using logistic regression models. The Autoclave sterilization process has four stages Pre-Vacuum, Rising Temperature, Sterilizing and Vacuum-Drying, which are classified employing the one vs all algorithm. The logistic regression model employed as variables the Autoclave absolute temperature and pressure. Data from 35 sterilization process were employed to find the logistic regression coefficients. As performance indexes, the precision, coverage and harmonic mean were employed. Results shown that the classification algorithm reached an efficiency of 81% to estimate the sterilization process stages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用逻辑回归模型的高压灭菌器灭菌过程阶段估计
本文提出了一种使用逻辑回归模型对高压灭菌器灭菌过程阶段进行估计的方法。高压灭菌器灭菌过程分为预真空、升温、灭菌和真空干燥四个阶段,采用一对一算法进行分类。逻辑回归模型以高压灭菌器绝对温度和绝对压力为变量。采用35个灭菌过程的数据计算logistic回归系数。性能指标采用精度、覆盖率和谐波平均值。结果表明,该分类算法对灭菌过程阶段的估计效率达到81%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fear levels in virtual environments, an approach to detection and experimental user stimuli sensation Portable measurement system of vertical jump using an Inertial Measurement Unit and pressure sensors A method for improving depth estimation in light field images Robustness of interest point detectors in near infrared, far infrared and visible spectral images Multiresolution spectral imaging by combining different sampling strategies in a compressive imager, MR-CASSI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1