A model of random sequences for de novo peptide sequencing

K. Jarman, W. Cannon, Kristin H. Jarman, A. Heredia-Langner
{"title":"A model of random sequences for de novo peptide sequencing","authors":"K. Jarman, W. Cannon, Kristin H. Jarman, A. Heredia-Langner","doi":"10.1109/BIBE.2003.1188948","DOIUrl":null,"url":null,"abstract":"We present a model for the probability of random sequences appearing in product ion spectra obtained from tandem mass spectrometry experiments using collision-induced dissociation. We demonstrate the use of these probabilities for ranking candidate peptide sequences obtained using a de novo algorithm. Sequence candidates are obtained from a spectrum graph that is greatly reduced in size from those in previous graph-theoretical de novo approaches. Evidence of multiple instances of subsequences of each candidate, due to different fragment ion type series as well as isotopic peaks, is incorporated in a hierarchical scoring scheme. This approach is shown to be useful for confirming results from database search and as a first step towards a statistically rigorous de novo algorithm.","PeriodicalId":178814,"journal":{"name":"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2003.1188948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We present a model for the probability of random sequences appearing in product ion spectra obtained from tandem mass spectrometry experiments using collision-induced dissociation. We demonstrate the use of these probabilities for ranking candidate peptide sequences obtained using a de novo algorithm. Sequence candidates are obtained from a spectrum graph that is greatly reduced in size from those in previous graph-theoretical de novo approaches. Evidence of multiple instances of subsequences of each candidate, due to different fragment ion type series as well as isotopic peaks, is incorporated in a hierarchical scoring scheme. This approach is shown to be useful for confirming results from database search and as a first step towards a statistically rigorous de novo algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于从头肽测序的随机序列模型
我们提出了一个随机序列出现在使用碰撞诱导解离的串联质谱实验获得的产物离子谱中的概率模型。我们演示了使用这些概率对使用从头算法获得的候选肽序列排序。候选序列是从谱图中获得的,该谱图的大小比以前的图理论从头开始的方法大大减少。由于不同的片段离子类型系列和同位素峰,每个候选子序列的多个实例的证据被纳入分层评分方案。这种方法对于确认数据库搜索的结果非常有用,并且是迈向统计上严格的从头算法的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GenoMosaic: on-demand multiple genome comparison and comparative annotation Respiratory gating for MRI and MRS in rodents DHC: a density-based hierarchical clustering method for time series gene expression data Evolving bubbles for prostate surface detection from TRUS images A repulsive clustering algorithm for gene expression data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1