Early Warning Identity Threat and Mitigation System

Aditya Tyagi, Razieh Nokhbeh Zaeem, K. S. Barber
{"title":"Early Warning Identity Threat and Mitigation System","authors":"Aditya Tyagi, Razieh Nokhbeh Zaeem, K. S. Barber","doi":"10.14279/TUJ.ECEASST.80.1146.1115","DOIUrl":null,"url":null,"abstract":"While many organizations share threat intelligence, there is still a lack of actionable data for organizations to proactively and effectively respond to emerging identity threats to mitigate a wide range of crimes. There currently exists no solution for organizations to access current trends and intelligence to understand emerging threats and how to appropriately respond to them.  This research project delivers I-WARN to help bridge that gap. Using a wide range of open-source information, I-WARN gathers, analyzes, and reports on threats related to the theft, fraud, and abuse of Personally Identifiable Information (PII). I-WARN then maps those threats to the MITRE ATT&CK -- a framework that helps understand lateral movement of an attack --  to offer mitigation and risk reduction tactics. I-WARN aims to deliver actionable intelligence, offering early warning into threat behaviors, and mitigation responses.  This paper discusses the technical details of I-WARN, non-exhaustive  current solutions for threat intelligence sharing, and future work.","PeriodicalId":115235,"journal":{"name":"Electron. Commun. Eur. Assoc. Softw. Sci. Technol.","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Commun. Eur. Assoc. Softw. Sci. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14279/TUJ.ECEASST.80.1146.1115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

While many organizations share threat intelligence, there is still a lack of actionable data for organizations to proactively and effectively respond to emerging identity threats to mitigate a wide range of crimes. There currently exists no solution for organizations to access current trends and intelligence to understand emerging threats and how to appropriately respond to them.  This research project delivers I-WARN to help bridge that gap. Using a wide range of open-source information, I-WARN gathers, analyzes, and reports on threats related to the theft, fraud, and abuse of Personally Identifiable Information (PII). I-WARN then maps those threats to the MITRE ATT&CK -- a framework that helps understand lateral movement of an attack --  to offer mitigation and risk reduction tactics. I-WARN aims to deliver actionable intelligence, offering early warning into threat behaviors, and mitigation responses.  This paper discusses the technical details of I-WARN, non-exhaustive  current solutions for threat intelligence sharing, and future work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预警识别、威胁和缓解系统
虽然许多组织共享威胁情报,但仍然缺乏可操作的数据,使组织能够主动有效地应对新出现的身份威胁,以减轻各种犯罪。目前还没有解决方案可以让组织访问当前趋势和情报,以了解新出现的威胁以及如何适当地应对它们。本研究项目提供I-WARN,以帮助弥合这一差距。I-WARN使用广泛的开源信息,收集、分析和报告与盗窃、欺诈和滥用个人身份信息(PII)相关的威胁。然后,I-WARN将这些威胁映射到MITRE ATT&CK(一个有助于了解攻击横向移动的框架),以提供缓解和降低风险的策略。I-WARN旨在提供可操作的情报,为威胁行为和缓解响应提供早期预警。本文讨论了I-WARN的技术细节,非详尽的当前威胁情报共享解决方案,以及未来的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Information Management for Multi-Agent Systems Towards SCION-enabled IXPs: The SCION Peering Coordinator Demonstration: A cloud-control system equipped with intrusion detection and mitigation Demo: Traffic Splitting for Tor - A Defense against Fingerprinting Attacks Preface and Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1