On the Information-Theoretic Limits of Noisy Sparse Phase Retrieval

Lan V. Truong, J. Scarlett
{"title":"On the Information-Theoretic Limits of Noisy Sparse Phase Retrieval","authors":"Lan V. Truong, J. Scarlett","doi":"10.1109/ITW44776.2019.8989363","DOIUrl":null,"url":null,"abstract":"The support recovery problem consists of determining a sparse subset of variables that is relevant in generating a set of observations. In this paper, we study the support recovery problem in the phase retrieval model consisting of noisy phaseless measurements, which arises in a diverse range of settings such as optical detection, X-ray crystallography, electron microscopy, and coherent diffractive imaging. Our focus is on information- theoretic fundamental limits under an approximate recovery criterion, with Gaussian measurements and a simple discrete model for the sparse non-zero entries. Our bounds provide sharp thresholds with near-matching constant factors in several scaling regimes on the sparsity and signal-to-noise ratio.","PeriodicalId":214379,"journal":{"name":"2019 IEEE Information Theory Workshop (ITW)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW44776.2019.8989363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The support recovery problem consists of determining a sparse subset of variables that is relevant in generating a set of observations. In this paper, we study the support recovery problem in the phase retrieval model consisting of noisy phaseless measurements, which arises in a diverse range of settings such as optical detection, X-ray crystallography, electron microscopy, and coherent diffractive imaging. Our focus is on information- theoretic fundamental limits under an approximate recovery criterion, with Gaussian measurements and a simple discrete model for the sparse non-zero entries. Our bounds provide sharp thresholds with near-matching constant factors in several scaling regimes on the sparsity and signal-to-noise ratio.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
噪声稀疏相位恢复的信息论极限
支持恢复问题包括确定与生成一组观测值相关的变量的稀疏子集。在本文中,我们研究了由噪声无相测量组成的相位恢复模型中的支撑恢复问题,该问题出现在各种设置中,如光学检测,x射线晶体学,电子显微镜和相干衍射成像。我们的重点是在近似恢复准则下的信息论基本极限,使用高斯测量和稀疏非零条目的简单离散模型。我们的边界在稀疏性和信噪比的几种尺度制度中提供了具有接近匹配常数因子的尖锐阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Increasing the Lifetime of Flash Memories Using Multi-Dimensional Graph-Based Codes Channel Coding at Low Capacity LDPC Code Design for Delayed Bit-Interleaved Coded Modulation Multi-library Coded Caching with Partial Secrecy Optimal Broadcast Rate of a Class of Two-Sender Unicast Index Coding Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1