Deep Autoencoder for Non-destructive Testing of Defects in Polymer Composites

Mingkai Zheng, Kaixin Liu, Nanxin Li, Yuan Yao, Yi Liu
{"title":"Deep Autoencoder for Non-destructive Testing of Defects in Polymer Composites","authors":"Mingkai Zheng, Kaixin Liu, Nanxin Li, Yuan Yao, Yi Liu","doi":"10.1109/ICCSS53909.2021.9721991","DOIUrl":null,"url":null,"abstract":"Infrared thermography (IRT) is an efficient non-destructive testing technique, which is widely applied in defect detection of polymer composites. However, the nonlinear nature of the thermographic data and the adverse effects of noise and inhomogeneous background prevent IRT from delivering satisfactory results. A novel deep autoencoder thermography (DAT) method is developed to enhance the contrast between defects and background. The multi-layer structure of the deep autoencoder is used to extract the features. Then, the results of the middle-hidden layer are visualized to show the effects of removing noise and uneven background. As a result, the defect is highlighted in the visualized images. The feasibility of the DAT method is verified using the experiment of carbon fiber reinforced polymer specimen.","PeriodicalId":435816,"journal":{"name":"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSS53909.2021.9721991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Infrared thermography (IRT) is an efficient non-destructive testing technique, which is widely applied in defect detection of polymer composites. However, the nonlinear nature of the thermographic data and the adverse effects of noise and inhomogeneous background prevent IRT from delivering satisfactory results. A novel deep autoencoder thermography (DAT) method is developed to enhance the contrast between defects and background. The multi-layer structure of the deep autoencoder is used to extract the features. Then, the results of the middle-hidden layer are visualized to show the effects of removing noise and uneven background. As a result, the defect is highlighted in the visualized images. The feasibility of the DAT method is verified using the experiment of carbon fiber reinforced polymer specimen.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于聚合物复合材料缺陷无损检测的深度自编码器
红外热成像(IRT)是一种高效的无损检测技术,广泛应用于聚合物复合材料的缺陷检测。然而,热成像数据的非线性性质以及噪声和非均匀背景的不利影响使红外热成像无法提供令人满意的结果。为了提高缺陷与背景的对比度,提出了一种新的深度自编码器热成像(DAT)方法。利用深度自编码器的多层结构提取特征。然后,将中间隐藏层的结果可视化,以显示去除噪声和不均匀背景的效果。结果,缺陷在可视化图像中被突出显示。通过碳纤维增强聚合物试件试验,验证了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the Prediction Model of Key Personnel's Food Crime Based on Stacking Model Fusion A Multidimensional System Architecture Oriented to the Data Space of Manufacturing Enterprises Semi-Supervised Deep Clustering with Soft Membership Affinity Moving Target Shooting Control Policy Based on Deep Reinforcement Learning Prediction of ship fuel consumption based on Elastic network regression model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1