Approaches to topic identification on the switchboard corpus

J. McDonough, Kenney Ng, P. Jeanrenaud, H. Gish, J. R. Rohlicek
{"title":"Approaches to topic identification on the switchboard corpus","authors":"J. McDonough, Kenney Ng, P. Jeanrenaud, H. Gish, J. R. Rohlicek","doi":"10.1109/ICASSP.1994.389275","DOIUrl":null,"url":null,"abstract":"Topic identification (TID) is the automatic classification of speech messages into one of a known set of possible topics. The TID task can be view as having three principal components: 1) event generation, 2) keyword event selection, and 3) topic modeling. Using data from the Switchboard corpus, the authors present experimental results for various approaches to the TID problem and compare the relative effectiveness of each. In addition, they examine the effect of keyword set size on identification accuracy and gauge the loss in performance when mismatched topic modeling and keyword selection schemes are used.<<ETX>>","PeriodicalId":290798,"journal":{"name":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1994.389275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

Abstract

Topic identification (TID) is the automatic classification of speech messages into one of a known set of possible topics. The TID task can be view as having three principal components: 1) event generation, 2) keyword event selection, and 3) topic modeling. Using data from the Switchboard corpus, the authors present experimental results for various approaches to the TID problem and compare the relative effectiveness of each. In addition, they examine the effect of keyword set size on identification accuracy and gauge the loss in performance when mismatched topic modeling and keyword selection schemes are used.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
总机语料库的主题识别方法
主题识别(TID)是将语音信息自动分类为一组已知的可能主题之一。可以将TID任务视为具有三个主要组件:1)事件生成、2)关键字事件选择和3)主题建模。利用交换机语料库中的数据,作者给出了处理TID问题的各种方法的实验结果,并比较了每种方法的相对有效性。此外,他们还研究了关键字集大小对识别准确性的影响,并测量了使用不匹配的主题建模和关键字选择方案时的性能损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new cumulant based parameter estimation method for noncausal autoregressive systems Using Gaussian mixture modeling in speech recognition An evaluation of cross-language adaptation for rapid HMM development in a new language Unsupervised segmentation of radar images using wavelet decomposition and cumulants Improving speech recognition performance via phone-dependent VQ codebooks and adaptive language models in SPHINX-II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1