A Multilinear Approach to the Unsupervised Learning of Morphology

A. Meyer, Markus Dickinson
{"title":"A Multilinear Approach to the Unsupervised Learning of Morphology","authors":"A. Meyer, Markus Dickinson","doi":"10.18653/v1/W16-2020","DOIUrl":null,"url":null,"abstract":"We present a novel approach to the unsupervised learning of morphology. In particular, we use a Multiple Cause Mixture Model (MCMM), a type of autoencoder network consisting of two node layers—hidden and surface—and a matrix of weights connecting hidden nodes to surface nodes. We show that an MCMM shares crucial graphical properties with autosegmental morphology. We argue on the basis of this graphical similarity that our approach is theoretically sound. Experiment results on Hebrew data show that this theoretical soundness bears out in practice.","PeriodicalId":186158,"journal":{"name":"Special Interest Group on Computational Morphology and Phonology Workshop","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Interest Group on Computational Morphology and Phonology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W16-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel approach to the unsupervised learning of morphology. In particular, we use a Multiple Cause Mixture Model (MCMM), a type of autoencoder network consisting of two node layers—hidden and surface—and a matrix of weights connecting hidden nodes to surface nodes. We show that an MCMM shares crucial graphical properties with autosegmental morphology. We argue on the basis of this graphical similarity that our approach is theoretically sound. Experiment results on Hebrew data show that this theoretical soundness bears out in practice.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
形态学无监督学习的多线性方法
我们提出了一种新的形态学无监督学习方法。特别是,我们使用了多原因混合模型(MCMM),这是一种自编码器网络,由两个节点层(隐藏节点和表面节点)以及连接隐藏节点和表面节点的权重矩阵组成。我们证明了MCMM与自节形态学共享关键的图形特性。基于这种图形相似性,我们认为我们的方法在理论上是合理的。希伯来数据的实验结果表明,这种理论的合理性在实践中得到了证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Colexifications for Bootstrapping Cross-lingual Datasets: The Case of Phonology, Concreteness, and Affectiveness KU-CST at the SIGMORPHON 2020 Task 2 on Unsupervised Morphological Paradigm Completion Linguist vs. Machine: Rapid Development of Finite-State Morphological Grammars Exploring Neural Architectures And Techniques For Typologically Diverse Morphological Inflection SIGMORPHON 2020 Task 0 System Description: ETH Zürich Team
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1