Intelligent Electronic Health Systems

D. Clifton, Marco A. F. Pimentel, K. Niehaus, Lei A. Clifton, T. Peto, D. Crook, P. Watkinson
{"title":"Intelligent Electronic Health Systems","authors":"D. Clifton, Marco A. F. Pimentel, K. Niehaus, Lei A. Clifton, T. Peto, D. Crook, P. Watkinson","doi":"10.1201/b19210-6","DOIUrl":null,"url":null,"abstract":"Healthcare systems worldwide are entering a new phase: ever-increasing quantities of complex, massively multivariate data concerning all aspects of patient care are starting to be routinely acquired and stored [1], throughout the life of a patient. This exponential growth in data quantities far outpaces the capability of clinical experts to cope, resulting in a so-called data deluge, in which the data are largely unexploited. There is huge potential for using advances in large-scale machine learning methodologies* to exploit the contents of these complex data sets by performing robust, scalable, automated inference to improve healthcare outcomes significantly by using patient-specific probabilistic models, a field in which there is little existing research [2] and which promises to develop into a new","PeriodicalId":285949,"journal":{"name":"TeleMedicine and Electronic Medicine","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TeleMedicine and Electronic Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/b19210-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Healthcare systems worldwide are entering a new phase: ever-increasing quantities of complex, massively multivariate data concerning all aspects of patient care are starting to be routinely acquired and stored [1], throughout the life of a patient. This exponential growth in data quantities far outpaces the capability of clinical experts to cope, resulting in a so-called data deluge, in which the data are largely unexploited. There is huge potential for using advances in large-scale machine learning methodologies* to exploit the contents of these complex data sets by performing robust, scalable, automated inference to improve healthcare outcomes significantly by using patient-specific probabilistic models, a field in which there is little existing research [2] and which promises to develop into a new
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能电子医疗系统
世界各地的医疗保健系统正在进入一个新的阶段:在患者的整个生命周期中,涉及患者护理各个方面的复杂、大规模多元数据的数量不断增加,并开始被常规获取和存储[1]。数据量的指数级增长远远超过了临床专家的应对能力,导致所谓的数据泛滥,其中大部分数据未被利用。利用大规模机器学习方法*的进步来利用这些复杂数据集的内容有巨大的潜力,通过执行鲁棒的、可扩展的、自动化的推理,通过使用患者特定的概率模型来显著改善医疗保健结果,这是一个现有研究很少的领域[2],并且有望发展成为一个新的领域
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Teleaudiology Acute Care Telemedicine Teleoncology Teleradiology Wireless Instrumentation and Biomedical Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1