Inference for Impulse Responses Under Model Uncertainty

L. Lieb, Stephan Smeekes
{"title":"Inference for Impulse Responses Under Model Uncertainty","authors":"L. Lieb, Stephan Smeekes","doi":"10.2139/ssrn.2940104","DOIUrl":null,"url":null,"abstract":"In many macroeconomic applications, confidence intervals for impulse responses are constructed by estimating VAR models in levels - ignoring cointegration rank uncertainty. We investigate the consequences of ignoring this uncertainty. We adapt several methods for handling model uncertainty and highlight their shortcomings. We propose a new method - Weighted-Inference-by-Model-Plausibility (WIMP) - that takes rank uncertainty into account in a data-driven way. In simulations the WIMP outperforms all other methods considered, delivering intervals that are robust to rank uncertainty, yet not overly conservative. We also study potential ramifications of rank uncertainty on applied macroeconomic analysis by re-assessing the effects of fiscal policy shocks.","PeriodicalId":106740,"journal":{"name":"ERN: Other Econometrics: Econometric Model Construction","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric Model Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2940104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In many macroeconomic applications, confidence intervals for impulse responses are constructed by estimating VAR models in levels - ignoring cointegration rank uncertainty. We investigate the consequences of ignoring this uncertainty. We adapt several methods for handling model uncertainty and highlight their shortcomings. We propose a new method - Weighted-Inference-by-Model-Plausibility (WIMP) - that takes rank uncertainty into account in a data-driven way. In simulations the WIMP outperforms all other methods considered, delivering intervals that are robust to rank uncertainty, yet not overly conservative. We also study potential ramifications of rank uncertainty on applied macroeconomic analysis by re-assessing the effects of fiscal policy shocks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模型不确定性下脉冲响应的推理
在许多宏观经济应用中,脉冲响应的置信区间是通过在水平上估计VAR模型来构建的,忽略了协整等级的不确定性。我们研究忽视这种不确定性的后果。本文介绍了几种处理模型不确定性的方法,并指出了它们的不足。本文提出了一种以数据驱动的方式考虑等级不确定性的新方法-加权模型合理性推理(WIMP)。在模拟中,WIMP优于所有其他考虑的方法,它提供的区间对不确定性排序具有鲁棒性,但又不会过于保守。我们还通过重新评估财政政策冲击的影响,研究了等级不确定性对应用宏观经济分析的潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rank Determination in Tensor Factor Model A Toolkit for Robust Risk Assessment Using F-Divergences One-factor Hull-White Model Calibration for CVA - Part I: Instrument Selection With a Kink High-Dimensional Granger Causality Tests with an Application to VIX and News Selective Linear Segmentation For Detecting Relevant Parameter Changes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1