Broad Autoencoder Features Learning for Pattern Classification Problems

Ting Wang, Wing W. Y. Ng, Wendi Li, S. Kwong, Jingde Li
{"title":"Broad Autoencoder Features Learning for Pattern Classification Problems","authors":"Ting Wang, Wing W. Y. Ng, Wendi Li, S. Kwong, Jingde Li","doi":"10.1109/ICCICC46617.2019.9146099","DOIUrl":null,"url":null,"abstract":"Deep Neural Networks (DNNs) demonstrate great performances in pattern classification problems. There are several available activation functions for DNNs while the Sigmoid and the Tanh functions are most widely used choices. In this work, we propose the Broad Autoencoder Features (BAF) to better utilize advantages of different activation functions. The BAF consists of four parallel connected Stacked AutoEncoders (SAEs) with different activation functions: the Sigmoid, the Tanh, the ReLu, and the Softplus. With this broad setting, the final learned features merge learn features using diversified nonlinear mappings from the original input features and such that more information is mined from the original input features. Experimental results show that the BAF yields better learned features in comparison with merging four SAEs using the same activation functions.","PeriodicalId":294902,"journal":{"name":"2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICC46617.2019.9146099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Deep Neural Networks (DNNs) demonstrate great performances in pattern classification problems. There are several available activation functions for DNNs while the Sigmoid and the Tanh functions are most widely used choices. In this work, we propose the Broad Autoencoder Features (BAF) to better utilize advantages of different activation functions. The BAF consists of four parallel connected Stacked AutoEncoders (SAEs) with different activation functions: the Sigmoid, the Tanh, the ReLu, and the Softplus. With this broad setting, the final learned features merge learn features using diversified nonlinear mappings from the original input features and such that more information is mined from the original input features. Experimental results show that the BAF yields better learned features in comparison with merging four SAEs using the same activation functions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
广泛的自编码器特征学习模式分类问题
深度神经网络(dnn)在模式分类问题中表现出优异的性能。dnn有几种可用的激活函数,其中Sigmoid和Tanh函数是最广泛使用的选择。在这项工作中,我们提出了广义自编码器特征(BAF),以更好地利用不同激活函数的优势。BAF由四个具有不同激活功能的并行连接的堆叠自动编码器(sae)组成:Sigmoid, Tanh, ReLu和Softplus。在这种广泛的设置下,最终学习到的特征使用来自原始输入特征的多样化非线性映射合并学习特征,从而从原始输入特征中挖掘出更多的信息。实验结果表明,与使用相同的激活函数合并4个sae相比,BAF获得了更好的学习特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Emergence of Abstract Sciences and Breakthroughs in Machine Knowledge Learning Computational Cognitive-Semantic Based Semantic Learning, Representation and Growth: A Perspective Multi-Scale PointPillars 3D Object Detection Network RTPA-based Software Generation by AI Programming Experience-based analysis and modeling for cognitive vehicle data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1