Deep neural based name entity recognizer and classifier for English language

S. Singh, Ajai Kumar, H. Darbari
{"title":"Deep neural based name entity recognizer and classifier for English language","authors":"S. Singh, Ajai Kumar, H. Darbari","doi":"10.1109/CCUBE.2017.8394152","DOIUrl":null,"url":null,"abstract":"Named entity recognition (NER) is an important and very effective for the Machine Translation, Retrieval (IR), Information Extraction (IE) from huge corpus, Question Answering (QA) system, text Mining and text clustering and etc. NER help us to classify or identify the Noun and its types such place /location, people, department, Ministry, organization, times and etc. The huge data available on social Media, websites, news channels and many more sources can be classified so that it can be used in research for NLP processes such as in Machine Translation, Speech Technology, Information Extraction and etc. To process this huge data or corpus we propose recent techniques of Machine Learning and Deep Neural Network. The Deep Neural Network approach will help to identify the Named entity (NE) from huge corpus or text by training the corpus using Word2vec approach. On the basis of fetched tokens and tag. We categorize these tokens into different Grammar categories based of cosine similarity concept of Deep Neural Network. Cosine similarity help to find the tag of unknown token or phases by finding its neared Vectors which are not trained earlier in Word2vec database. We have used the supervised learning (SL) techniques to train the network.","PeriodicalId":443423,"journal":{"name":"2017 International Conference on Circuits, Controls, and Communications (CCUBE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Circuits, Controls, and Communications (CCUBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCUBE.2017.8394152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Named entity recognition (NER) is an important and very effective for the Machine Translation, Retrieval (IR), Information Extraction (IE) from huge corpus, Question Answering (QA) system, text Mining and text clustering and etc. NER help us to classify or identify the Noun and its types such place /location, people, department, Ministry, organization, times and etc. The huge data available on social Media, websites, news channels and many more sources can be classified so that it can be used in research for NLP processes such as in Machine Translation, Speech Technology, Information Extraction and etc. To process this huge data or corpus we propose recent techniques of Machine Learning and Deep Neural Network. The Deep Neural Network approach will help to identify the Named entity (NE) from huge corpus or text by training the corpus using Word2vec approach. On the basis of fetched tokens and tag. We categorize these tokens into different Grammar categories based of cosine similarity concept of Deep Neural Network. Cosine similarity help to find the tag of unknown token or phases by finding its neared Vectors which are not trained earlier in Word2vec database. We have used the supervised learning (SL) techniques to train the network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度神经网络的英文名称实体识别与分类器
命名实体识别(NER)对于机器翻译、检索、海量语料库信息提取、问答系统、文本挖掘和文本聚类等都是非常重要和有效的技术。NER帮助我们分类或识别名词及其类型,如地点、人物、部门、部门、组织、时间等。社交媒体、网站、新闻频道和更多来源的海量数据可以被分类,从而可以用于机器翻译、语音技术、信息提取等NLP过程的研究。为了处理这些庞大的数据或语料库,我们提出了机器学习和深度神经网络的最新技术。深度神经网络方法将通过使用Word2vec方法训练语料库,帮助从庞大的语料库或文本中识别命名实体(NE)。根据获取的标记和标记。我们基于深度神经网络的余弦相似度概念将这些标记划分为不同的语法类别。余弦相似度通过找到未在Word2vec数据库中训练过的接近向量来帮助找到未知标记或阶段的标签。我们使用监督学习(SL)技术来训练网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wavelet based clutter reduction of GPR data Wire monopole antenna for low earth orbit satellite applications Fast turbo codes using sub-block based interleaver MEMS capacitive humidity sensor with plate array structure using polyimide sensing layer A study on application layer protocols used in IoT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1