VelocityGAN: Subsurface Velocity Image Estimation Using Conditional Adversarial Networks

Zhongping Zhang, Yue Wu, Zheng Zhou, Youzuo Lin
{"title":"VelocityGAN: Subsurface Velocity Image Estimation Using Conditional Adversarial Networks","authors":"Zhongping Zhang, Yue Wu, Zheng Zhou, Youzuo Lin","doi":"10.1109/WACV.2019.00080","DOIUrl":null,"url":null,"abstract":"Acoustic-and elastic-waveform inversion is an important and widely used method to reconstruct subsurface velocity image. Waveform inversion is a typical non-linear and ill-posed inverse problem. Existing physics-driven computational methods for solving waveform inversion suffer from the cycle skipping and local minima issues, and not to mention solving waveform inversion is computationally expensive. In this paper, we developed a real-time datadriven technique, VelocityGAN, to accurately reconstruct subsurface velocities. Our VelocityGAN is an end-to-end framework which can generate high-quality velocity images directly from the raw seismic waveform data. A series of experiments are conducted on the synthetic seismic reflection data to evaluate the effectiveness and efficiency of VelocityGAN. We not only compare it with existing physics-driven approaches but also choose some deep learning frameworks as our data-driven baselines. The experiment results show that VelocityGAN outperforms the physics-driven waveform inversion methods and achieves the state-of-the-art performance among data-driven baselines.","PeriodicalId":436637,"journal":{"name":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2019.00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Acoustic-and elastic-waveform inversion is an important and widely used method to reconstruct subsurface velocity image. Waveform inversion is a typical non-linear and ill-posed inverse problem. Existing physics-driven computational methods for solving waveform inversion suffer from the cycle skipping and local minima issues, and not to mention solving waveform inversion is computationally expensive. In this paper, we developed a real-time datadriven technique, VelocityGAN, to accurately reconstruct subsurface velocities. Our VelocityGAN is an end-to-end framework which can generate high-quality velocity images directly from the raw seismic waveform data. A series of experiments are conducted on the synthetic seismic reflection data to evaluate the effectiveness and efficiency of VelocityGAN. We not only compare it with existing physics-driven approaches but also choose some deep learning frameworks as our data-driven baselines. The experiment results show that VelocityGAN outperforms the physics-driven waveform inversion methods and achieves the state-of-the-art performance among data-driven baselines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用条件对抗网络的地下速度图像估计
声弹波形反演是一种重要而广泛应用的地下速度图像重建方法。波形反演是典型的非线性不适定反问题。现有的求解波形反演的物理驱动计算方法存在周期跳变和局部最小值问题,而且求解波形反演的计算成本很高。在本文中,我们开发了一种实时数据驱动技术,VelocityGAN,以准确地重建地下速度。我们的VelocityGAN是一个端到端框架,可以直接从原始地震波形数据生成高质量的速度图像。利用地震反射合成数据进行了一系列实验,以评价VelocityGAN的有效性和效率。我们不仅将其与现有的物理驱动方法进行比较,而且还选择了一些深度学习框架作为我们的数据驱动基线。实验结果表明,VelocityGAN优于物理驱动的波形反演方法,在数据驱动的基线中达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ancient Painting to Natural Image: A New Solution for Painting Processing GAN-Based Pose-Aware Regulation for Video-Based Person Re-Identification Coupled Generative Adversarial Network for Continuous Fine-Grained Action Segmentation Dense 3D Point Cloud Reconstruction Using a Deep Pyramid Network 3D Reconstruction and Texture Optimization Using a Sparse Set of RGB-D Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1