String Kernels for Document Classification: A Comparative Study

Nikhil V. Chandran, A. S., A. V. S.
{"title":"String Kernels for Document Classification: A Comparative Study","authors":"Nikhil V. Chandran, A. S., A. V. S.","doi":"10.1109/ICITIIT54346.2022.9744134","DOIUrl":null,"url":null,"abstract":"In machine learning and data mining, String Kernels combined with classifiers like Support Vector Machines (SVM) show state-of-the-art results for tasks such as text classification. Traditional pairwise comparisons of strings on large datasets are computationally expensive and result in quadratic runtimes. This work compares the performance of various String Kernels and similarity measures on the document classification task. We compare different String Kernels such as Spectrum Kernel, String Subsequence Kernel, Weighted Degree Kernel, and Distance Substitution Kernel in this paper for classifying text documents. A detailed comparative study of these Kernel techniques on real-life document corpus such as Reuters-21578 shows different insights when used with and without other feature extraction techniques. The results indicate that string similarity measures give the best performance when run over the entire corpus but for small and medium-sized datasets. The complexity increases with an increase in the size of the dataset.","PeriodicalId":184353,"journal":{"name":"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITIIT54346.2022.9744134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In machine learning and data mining, String Kernels combined with classifiers like Support Vector Machines (SVM) show state-of-the-art results for tasks such as text classification. Traditional pairwise comparisons of strings on large datasets are computationally expensive and result in quadratic runtimes. This work compares the performance of various String Kernels and similarity measures on the document classification task. We compare different String Kernels such as Spectrum Kernel, String Subsequence Kernel, Weighted Degree Kernel, and Distance Substitution Kernel in this paper for classifying text documents. A detailed comparative study of these Kernel techniques on real-life document corpus such as Reuters-21578 shows different insights when used with and without other feature extraction techniques. The results indicate that string similarity measures give the best performance when run over the entire corpus but for small and medium-sized datasets. The complexity increases with an increase in the size of the dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于文档分类的字符串核:比较研究
在机器学习和数据挖掘中,字符串核与支持向量机(SVM)等分类器相结合,可以为文本分类等任务显示最先进的结果。传统的在大型数据集上对字符串进行两两比较的方法在计算上非常昂贵,并且会导致二次运行时间。这项工作比较了各种字符串内核的性能和文档分类任务的相似度度量。本文比较了谱核、字符串子序列核、加权度核和距离替换核等不同的字符串核在文本文档分类中的应用。对这些Kernel技术在真实文档语料库(如Reuters-21578)上的详细比较研究显示,在使用和不使用其他特征提取技术时,会产生不同的见解。结果表明,字符串相似度度量在整个语料库上运行时提供了最佳性能,但对于中小型数据集。复杂性随着数据集大小的增加而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HomeID: Home Visitors Recognition using Internet of Things and Deep Learning Algorithms Auto-Encoder LSTM for learning dependency of traffic flow by sequencing spatial-temporal traffic flow rate: A speed up technique for routing vehicles between origin and destination A Statistical Study and Analysis to Identify the Importance of Open-source Software Data Imputation Techniques: An Empirical Study using Chronic Kidney Disease and Life Expectancy Datasets Miniature probability maps using resource limited embedded device for classification of histopathological images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1