Assessment of a CFD-Based Machine Learning Approach on Turbulent Flow Approximation

Dorsa Ziaei, Seyyed Pooya Hekmati Athar, N. Goudarzi
{"title":"Assessment of a CFD-Based Machine Learning Approach on Turbulent Flow Approximation","authors":"Dorsa Ziaei, Seyyed Pooya Hekmati Athar, N. Goudarzi","doi":"10.1115/es2019-3925","DOIUrl":null,"url":null,"abstract":"\n Computational fluid dynamics (CFD) simulation is usually a computationally expensive, memory demanding, and time consuming iterative process. These drawbacks limit the use of CFD, especially when either spatiotemporal scales or geometry complexity increases. This paper presents the preliminary results from the assessment of an approximation model for predicting non-uniform steady turbulent flows in a 3D domain, utilizing deep learning (DL) algorithms. In particular, the artificial neural network (ANN) approach uses most important variables data from currently CFD simulation results to link multi-variable input spaces (e.g. input speed and direction, geometry configuration) with multi-variable output space (e.g. velocity magnitude, pressure gradient) to obtain an efficient and accurate approximation of the entire velocity field for given input flow field characteristics. The results demonstrated higher computational speed with a similar accuracy using DL algorithms versus CFD simulation. This integrated approach can provide immediate feedback for real-time design iterations for the entire computational domain at the early stages of design. Hence, designers and engineers can easily generate immense amounts of design alternatives without facing the time-consuming task of evaluation and selection.","PeriodicalId":219138,"journal":{"name":"ASME 2019 13th International Conference on Energy Sustainability","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 13th International Conference on Energy Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/es2019-3925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Computational fluid dynamics (CFD) simulation is usually a computationally expensive, memory demanding, and time consuming iterative process. These drawbacks limit the use of CFD, especially when either spatiotemporal scales or geometry complexity increases. This paper presents the preliminary results from the assessment of an approximation model for predicting non-uniform steady turbulent flows in a 3D domain, utilizing deep learning (DL) algorithms. In particular, the artificial neural network (ANN) approach uses most important variables data from currently CFD simulation results to link multi-variable input spaces (e.g. input speed and direction, geometry configuration) with multi-variable output space (e.g. velocity magnitude, pressure gradient) to obtain an efficient and accurate approximation of the entire velocity field for given input flow field characteristics. The results demonstrated higher computational speed with a similar accuracy using DL algorithms versus CFD simulation. This integrated approach can provide immediate feedback for real-time design iterations for the entire computational domain at the early stages of design. Hence, designers and engineers can easily generate immense amounts of design alternatives without facing the time-consuming task of evaluation and selection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
湍流近似中基于cfd的机器学习方法的评估
计算流体动力学(CFD)模拟通常是一个计算量大、内存要求高、耗时的迭代过程。这些缺点限制了CFD的使用,特别是当时空尺度或几何复杂性增加时。本文介绍了利用深度学习(DL)算法对预测三维域中非均匀稳态湍流的近似模型进行评估的初步结果。特别是,人工神经网络(ANN)方法利用当前CFD仿真结果中最重要的变量数据,将多变量输入空间(如输入速度和方向、几何构型)与多变量输出空间(如速度大小、压力梯度)联系起来,以获得给定输入流场特征下整个速度场的高效、精确逼近。结果表明,与CFD模拟相比,使用DL算法具有更高的计算速度和相似的精度。这种集成的方法可以在设计的早期阶段为整个计算域的实时设计迭代提供即时反馈。因此,设计师和工程师可以轻松地生成大量的设计备选方案,而无需面对耗时的评估和选择任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Building Stock Inertia and Impacts on Energy Consumption and CO2 Emissions in Qatar Optimization of Storage Bin Geometry for High Temperature Particle-Based CSP Systems Clean Energy From Municipal Solid Waste (MSW) Comparative Studies on the Effect of Selected Iron-Based Additives on Anaerobic Digestion of Okra Waste Development of a Cascade Elastocaloric Regenerator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1