Exploring Hardware Profile-Guided Green Datacenter Scheduling

W. Tang, Yu Wang, Haopeng Liu, Zhang Tao, Chao Li, Xiaoyao Liang
{"title":"Exploring Hardware Profile-Guided Green Datacenter Scheduling","authors":"W. Tang, Yu Wang, Haopeng Liu, Zhang Tao, Chao Li, Xiaoyao Liang","doi":"10.1109/ICPP.2015.10","DOIUrl":null,"url":null,"abstract":"Recently, tapping into renewable energy sources has shown great promise in alleviating server energy poverty and reducing IT carbon footprint. Due to the limited, time-varying green power generation, matching server power demand to runtime power budget is often crucial in green data centers. However, existing studies mainly focus on the temporal variability of the power supply and demand, while largely ignore the spatial variation issue in server hardware. With more complex computing units integrated and the technology scaling, the performance/power variation among nodes and the conservative supply voltage margin of each core can greatly compromise the power matching effectiveness that a green datacenter can achieve. This paper explores green datacenter design that takes into account non-uniform hardware power characteristics. We propose is cope, a novel power management framework that can (1) expose architecture variability to the datacenter facility-level scheduler for efficient power matching, and (2) balance the energy usage and lifetime of compute nodes in the highly dynamic green computing environment. Using realistic hardware profiling data and renewable energy data, we show that is cope can reduce the energy cost up to 54%, while maintaining fairly balanced processor utilization rate and negligible profiling overhead.","PeriodicalId":423007,"journal":{"name":"2015 44th International Conference on Parallel Processing","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 44th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2015.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Recently, tapping into renewable energy sources has shown great promise in alleviating server energy poverty and reducing IT carbon footprint. Due to the limited, time-varying green power generation, matching server power demand to runtime power budget is often crucial in green data centers. However, existing studies mainly focus on the temporal variability of the power supply and demand, while largely ignore the spatial variation issue in server hardware. With more complex computing units integrated and the technology scaling, the performance/power variation among nodes and the conservative supply voltage margin of each core can greatly compromise the power matching effectiveness that a green datacenter can achieve. This paper explores green datacenter design that takes into account non-uniform hardware power characteristics. We propose is cope, a novel power management framework that can (1) expose architecture variability to the datacenter facility-level scheduler for efficient power matching, and (2) balance the energy usage and lifetime of compute nodes in the highly dynamic green computing environment. Using realistic hardware profiling data and renewable energy data, we show that is cope can reduce the energy cost up to 54%, while maintaining fairly balanced processor utilization rate and negligible profiling overhead.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索硬件配置文件引导的绿色数据中心调度
最近,利用可再生能源在缓解服务器能源短缺和减少IT碳足迹方面显示出巨大的希望。由于有限的、时变的绿色发电,在绿色数据中心中,将服务器电力需求与运行时电力预算相匹配通常是至关重要的。然而,现有的研究主要集中在电力供需的时间变异性上,而忽略了服务器硬件的空间变异性问题。随着更复杂计算单元的集成和技术的扩展,节点之间的性能/功率变化以及每个核心的保守供电电压裕度会极大地影响绿色数据中心所能实现的功率匹配效率。本文探讨了考虑非均匀硬件功耗特性的绿色数据中心设计。我们提出了一种新的电源管理框架,它可以(1)将架构可变性暴露给数据中心设施级调度器,以实现有效的电源匹配;(2)在高度动态的绿色计算环境中平衡计算节点的能源使用和生命周期。使用真实的硬件分析数据和可再生能源数据,我们表明该处理可以将能源成本降低高达54%,同时保持相当平衡的处理器利用率和可以忽略不计的分析开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Elastic and Efficient Virtual Network Provisioning for Cloud-Based Multi-tier Applications Design and Implementation of a Highly Efficient DGEMM for 64-Bit ARMv8 Multi-core Processors Leveraging Error Compensation to Minimize Time Deviation in Parallel Multi-core Simulations Crowdsourcing Sensing Workloads of Heterogeneous Tasks: A Distributed Fairness-Aware Approach TAPS: Software Defined Task-Level Deadline-Aware Preemptive Flow Scheduling in Data Centers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1