Energy-based Bayesian spectrum sensing over α-κ-μ fading channels

Sanjeev Gurugopinath, S. Shobitha
{"title":"Energy-based Bayesian spectrum sensing over α-κ-μ fading channels","authors":"Sanjeev Gurugopinath, S. Shobitha","doi":"10.1109/CONECCT.2015.7383881","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of energy detection for spectrum sensing over the α-κ-μ fading channel, in a Bayesian framework. The α-κ-μ fading distribution includes popular models such as Rayleigh, Rice, Nakagami-m, Weibull, one-sided Gaussian, α-μ, κ-μ and κ-μ extreme distributions as special cases. We present a fast-converging infinite series expression for the probability of overall error, i.e., the convex combination of probability of false-alarm and probability of signal detection. We also present an analysis on optimal detection threshold that minimizes the probability of error. We discuss the performance of our detector for various values of the fading parameters through numerical techniques and validate our analysis through Monte Carlo simulations.","PeriodicalId":168357,"journal":{"name":"2017 9th International Conference on Communication Systems and Networks (COMSNETS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 9th International Conference on Communication Systems and Networks (COMSNETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONECCT.2015.7383881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we consider the problem of energy detection for spectrum sensing over the α-κ-μ fading channel, in a Bayesian framework. The α-κ-μ fading distribution includes popular models such as Rayleigh, Rice, Nakagami-m, Weibull, one-sided Gaussian, α-μ, κ-μ and κ-μ extreme distributions as special cases. We present a fast-converging infinite series expression for the probability of overall error, i.e., the convex combination of probability of false-alarm and probability of signal detection. We also present an analysis on optimal detection threshold that minimizes the probability of error. We discuss the performance of our detector for various values of the fading parameters through numerical techniques and validate our analysis through Monte Carlo simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于能量的α-κ-μ衰落信道贝叶斯频谱传感
在本文中,我们考虑了在贝叶斯框架下,在α-κ-μ衰落信道上的频谱感知能量检测问题。α-κ-μ衰落分布包括常用的Rayleigh、Rice、Nakagami-m、Weibull、单侧高斯分布、α-μ、κ-μ和κ-μ极值分布等。给出了整体误差概率的一个快速收敛的无穷级数表达式,即虚警概率与信号检测概率的凸组合。我们也提出了一个最佳检测阈值的分析,以最小化错误的概率。我们通过数值技术讨论了我们的检测器在不同衰落参数值下的性能,并通过蒙特卡罗模拟验证了我们的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opp-relay: Managing directionality and mobility issues of millimeter-wave via D2D communication mm-Wave on wheels: Practical 60 GHz vehicular communication without beam training Social network visualization: Does partial edges affect user comprehension? Efficient Twitter sentiment classification using subjective distant supervision Hydra: Leveraging functional slicing for efficient distributed SDN controllers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1