2D-pattern matching image and video compression

Marc Alzina, W. Szpankowski, A. Grama
{"title":"2D-pattern matching image and video compression","authors":"Marc Alzina, W. Szpankowski, A. Grama","doi":"10.1109/DCC.1999.755692","DOIUrl":null,"url":null,"abstract":"We propose a lossy data compression scheme based on an approximate two-dimensional pattern matching (2D-PMC) extension of the Lempel-Ziv lossless scheme. We apply the scheme to image and video compression and report on our theoretical and experimental results. Theoretically, we show that the so-called fixed database model leads to suboptimal compression. Furthermore, the compression ratio of this model is as low as the generalized entropy that we define. We use this model for our video compression scheme and present experimental results. For image compression we use a growing database model. The implementation of PD-PMC is a challenging problem from the algorithmic point of view. We use a range of novel techniques and data structures such as k-d trees, generalized run length coding, adaptive arithmetic coding, and variable and adaptive maximum distortion level to achieve good compression ratios at high compression speeds. We demonstrate bit rates in the range of 0.25-0.5 bpp for high-quality images and data rates in the range of 0.15-0.4 Mbit/s for video compression.","PeriodicalId":103598,"journal":{"name":"Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1999.755692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

We propose a lossy data compression scheme based on an approximate two-dimensional pattern matching (2D-PMC) extension of the Lempel-Ziv lossless scheme. We apply the scheme to image and video compression and report on our theoretical and experimental results. Theoretically, we show that the so-called fixed database model leads to suboptimal compression. Furthermore, the compression ratio of this model is as low as the generalized entropy that we define. We use this model for our video compression scheme and present experimental results. For image compression we use a growing database model. The implementation of PD-PMC is a challenging problem from the algorithmic point of view. We use a range of novel techniques and data structures such as k-d trees, generalized run length coding, adaptive arithmetic coding, and variable and adaptive maximum distortion level to achieve good compression ratios at high compression speeds. We demonstrate bit rates in the range of 0.25-0.5 bpp for high-quality images and data rates in the range of 0.15-0.4 Mbit/s for video compression.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维模式匹配图像和视频压缩
提出了一种基于近似二维模式匹配(2D-PMC)扩展的Lempel-Ziv无损压缩方案。我们将该方案应用于图像和视频压缩,并报告了理论和实验结果。理论上,我们证明了所谓的固定数据库模型会导致次优压缩。此外,该模型的压缩比与我们定义的广义熵一样低。我们将该模型应用于视频压缩方案,并给出了实验结果。对于图像压缩,我们使用增长数据库模型。从算法的角度来看,PD-PMC的实现是一个具有挑战性的问题。我们使用了一系列新颖的技术和数据结构,如k-d树、广义运行长度编码、自适应算术编码以及可变和自适应最大失真水平,以在高压缩速度下实现良好的压缩比。我们演示了高质量图像的比特率范围为0.25-0.5 bpp,视频压缩的数据速率范围为0.15-0.4 Mbit/s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time VBR rate control of MPEG video based upon lexicographic bit allocation Performance of quantizers on noisy channels using structured families of codes SICLIC: a simple inter-color lossless image coder Protein is incompressible Encoding time reduction in fractal image compression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1