G. Karch, F. Sadlo, C. Meister, Philipp Rauschenberger, Kathrin Eisenschmidt, B. Weigand, T. Ertl
{"title":"Visualization of piecewise linear interface calculation","authors":"G. Karch, F. Sadlo, C. Meister, Philipp Rauschenberger, Kathrin Eisenschmidt, B. Weigand, T. Ertl","doi":"10.1109/PacificVis.2013.6596136","DOIUrl":null,"url":null,"abstract":"Piecewise linear interface calculation (PLIC) is one of the most widely employed reconstruction schemes for the simulation of multiphase flow. In this visualization paper we focus on the reconstruction from the simulation point of view, i.e., we present a framework for the analysis of this reconstruction scheme together with its implications on the overall simulation. By interpreting PLIC reconstruction as an isosurface extraction problem from the first-order Taylor approximation of the underlying volume of fluid field, we obtain a framework for error analysis and geometric representation of the reconstruction including the fluxes involved in the simulation. At the same time this generalizes PLIC to higher-order approximation. We exemplify the utility and versatility of our visualization approach on several multiphase CFD examples.","PeriodicalId":179865,"journal":{"name":"2013 IEEE Pacific Visualization Symposium (PacificVis)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis.2013.6596136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Piecewise linear interface calculation (PLIC) is one of the most widely employed reconstruction schemes for the simulation of multiphase flow. In this visualization paper we focus on the reconstruction from the simulation point of view, i.e., we present a framework for the analysis of this reconstruction scheme together with its implications on the overall simulation. By interpreting PLIC reconstruction as an isosurface extraction problem from the first-order Taylor approximation of the underlying volume of fluid field, we obtain a framework for error analysis and geometric representation of the reconstruction including the fluxes involved in the simulation. At the same time this generalizes PLIC to higher-order approximation. We exemplify the utility and versatility of our visualization approach on several multiphase CFD examples.