A convolutional neural network approach for semaphore flag signaling recognition

Qian Zhao, Yawei Li, Ning Yang, Yuliang Yang, Mengyu Zhu
{"title":"A convolutional neural network approach for semaphore flag signaling recognition","authors":"Qian Zhao, Yawei Li, Ning Yang, Yuliang Yang, Mengyu Zhu","doi":"10.1109/SIPROCESS.2016.7888306","DOIUrl":null,"url":null,"abstract":"This paper proposes a recognition approach for Semaphore flag signaling (SFS). We use the improved convolutional neural network (CNN) to classify the SFS. In the experiment we made Semaphore flag signaling system (SFSS), which based on CNN. The image can be directly input into the SFSS. Each alphabetic character or control signal is indicated by a particular flag pattern. We shoot the SFS videos by a monocular camera. The dataset is divided into five SFS classes. The improved CNN uses the Relu activation function, the max-pooling methods. It's alway use SFS data whitening and grayscale preprocessing methods. The improved CNN provides for partial invariance to different light, angles, scenes, and a group of people. The result shows that our approach classifies five SFS classes with 99.95% accuracy.","PeriodicalId":142802,"journal":{"name":"2016 IEEE International Conference on Signal and Image Processing (ICSIP)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Signal and Image Processing (ICSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPROCESS.2016.7888306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a recognition approach for Semaphore flag signaling (SFS). We use the improved convolutional neural network (CNN) to classify the SFS. In the experiment we made Semaphore flag signaling system (SFSS), which based on CNN. The image can be directly input into the SFSS. Each alphabetic character or control signal is indicated by a particular flag pattern. We shoot the SFS videos by a monocular camera. The dataset is divided into five SFS classes. The improved CNN uses the Relu activation function, the max-pooling methods. It's alway use SFS data whitening and grayscale preprocessing methods. The improved CNN provides for partial invariance to different light, angles, scenes, and a group of people. The result shows that our approach classifies five SFS classes with 99.95% accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
信号量标志信号识别的卷积神经网络方法
提出了一种信号量标志信令(SFS)的识别方法。我们使用改进的卷积神经网络(CNN)对SFS进行分类。在实验中,我们制作了基于CNN的信号量标志信令系统(SFSS)。图像可以直接输入到SFSS中。每个字母字符或控制信号由一个特定的标志图案表示。我们用单目摄像机拍摄SFS视频。数据集被分为五个SFS类。改进后的CNN使用了Relu激活函数,即最大池化方法。通常采用SFS数据白化和灰度预处理方法。改进后的CNN提供了对不同光线、角度、场景和人群的部分不变性。结果表明,我们的方法能以99.95%的准确率对5个SFS类进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SIFT matching method based on K nearest neighbor support feature points Towards robust ego-centric hand gesture analysis for robot control Walking patterns of knee and ankle joints during level walking and uphill walking Vision-based autonomous detection of lane and pedestrians Analyses of signal characteristics of highly-maneuvering platform SAR and time-domain imaging method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1