2D shape recognition by hidden Markov models

M. Bicego, Vittorio Murino
{"title":"2D shape recognition by hidden Markov models","authors":"M. Bicego, Vittorio Murino","doi":"10.1109/ICIAP.2001.956980","DOIUrl":null,"url":null,"abstract":"In computer vision, two-dimensional shape classification is a complex and well-studied topic, often basic for three-dimensional object recognition. Object contours are a widely chosen feature for representing objects, useful in many respects for classification problems. We address the use of hidden Markov models (HMM) for shape analysis, based on chain code representation of object contours. HMM represent a widespread approach to the modeling of sequences, and are largely used for many applications, but unfortunately are poorly considered in the literature concerning shape analysis, and in any case, without reference to noise or occlusion sensitivity. The HMM approach to shape modeling is tested, probing good invariance of this method in terms of noise, occlusions, and object scaling.","PeriodicalId":365627,"journal":{"name":"Proceedings 11th International Conference on Image Analysis and Processing","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Image Analysis and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2001.956980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In computer vision, two-dimensional shape classification is a complex and well-studied topic, often basic for three-dimensional object recognition. Object contours are a widely chosen feature for representing objects, useful in many respects for classification problems. We address the use of hidden Markov models (HMM) for shape analysis, based on chain code representation of object contours. HMM represent a widespread approach to the modeling of sequences, and are largely used for many applications, but unfortunately are poorly considered in the literature concerning shape analysis, and in any case, without reference to noise or occlusion sensitivity. The HMM approach to shape modeling is tested, probing good invariance of this method in terms of noise, occlusions, and object scaling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于隐马尔可夫模型的二维形状识别
在计算机视觉中,二维形状分类是一个复杂而深入研究的课题,通常是三维物体识别的基础。对象轮廓是一种广泛使用的用于表示对象的特征,在许多方面对分类问题都很有用。我们解决使用隐马尔可夫模型(HMM)的形状分析,基于链码表示的对象轮廓。HMM代表了一种广泛的序列建模方法,并且在许多应用中被广泛使用,但不幸的是,在关于形状分析的文献中,没有考虑到噪声或遮挡敏感性。对形状建模的HMM方法进行了测试,探测了该方法在噪声、遮挡和对象缩放方面的良好不变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Circle detection based on orientation matching Towards teleconferencing by view synthesis and large-baseline stereo Learning and caricaturing the face space using self-organization and Hebbian learning for face processing Bayesian face recognition with deformable image models Using feature-vector based analysis, based on principal component analysis and independent component analysis, for analysing hyperspectral images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1