The Expansion Planning of Wind-Thermal Co-generation System Based on Harmony Search Algorithm under Smart Grid

Yonggang Li, W. Dong, Xiaoning Feng, Minghui Zhang
{"title":"The Expansion Planning of Wind-Thermal Co-generation System Based on Harmony Search Algorithm under Smart Grid","authors":"Yonggang Li, W. Dong, Xiaoning Feng, Minghui Zhang","doi":"10.1109/SmartGridComm.2019.8909757","DOIUrl":null,"url":null,"abstract":"Under Smart Grid circumstance, the problem that the large grid system is difficult to schedule can be solved by the micro-grid. Meanwhile, the shortage of traditional energy makes the demand-supply gap enlarge and renewable energy will become the primary energy supply in the future. Therefore, the study on how to expand renewable energy in the co-generation system in micro-grid is of great significant and valuable. In this paper, the minimum total cost of the expansion plan and the improvement of micro-grid reliability are taken as the optimal goal. The expansion planning model of the wind-thermal co-generation system is established, which uses the Harmony Search (HS) and the Genetic Algorithm (GA) to simulate a micro-grid with five nodes in a decade respectively. The comparison results of the simulation results show that the expansion planning model of the co-generation system with the HS method is more feasible and effective than that with GA. Through the research on the expansion planning of wind-thermal co-generation system, it can provide the decision support and reference for the long-term expansion planning of co-generation system in micro-grid under the Smart Grid.","PeriodicalId":377150,"journal":{"name":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2019.8909757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Under Smart Grid circumstance, the problem that the large grid system is difficult to schedule can be solved by the micro-grid. Meanwhile, the shortage of traditional energy makes the demand-supply gap enlarge and renewable energy will become the primary energy supply in the future. Therefore, the study on how to expand renewable energy in the co-generation system in micro-grid is of great significant and valuable. In this paper, the minimum total cost of the expansion plan and the improvement of micro-grid reliability are taken as the optimal goal. The expansion planning model of the wind-thermal co-generation system is established, which uses the Harmony Search (HS) and the Genetic Algorithm (GA) to simulate a micro-grid with five nodes in a decade respectively. The comparison results of the simulation results show that the expansion planning model of the co-generation system with the HS method is more feasible and effective than that with GA. Through the research on the expansion planning of wind-thermal co-generation system, it can provide the decision support and reference for the long-term expansion planning of co-generation system in micro-grid under the Smart Grid.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能电网下基于和谐搜索算法的风热电联产系统扩容规划
在智能电网环境下,大电网系统调度困难的问题可以通过微电网来解决。同时,传统能源的短缺使供需缺口扩大,可再生能源将成为未来的主要能源供应。因此,研究如何在微网热电联产系统中扩容可再生能源具有重要的意义和价值。本文以扩容方案总成本最小和提高微网可靠性为最优目标。建立了风热电联产系统扩展规划模型,分别采用和谐搜索(HS)和遗传算法(GA)对10年5节点微电网进行了模拟。仿真结果的对比表明,采用HS方法建立的热电联产系统扩容规划模型比采用遗传算法建立的模型更为可行和有效。通过对风热电联产系统扩容规划的研究,可以为智能电网下微网热电联产系统的长期扩容规划提供决策支持和参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online Demand Response of Voltage-Dependent Loads for Corrective Grid De-Congestion MEED: An Unsupervised Multi-Environment Event Detector for Non-Intrusive Load Monitoring Traction substation power signal characteristics and transient power quality evaluation method Reliable Streaming and Synchronization of Smart Meter Data over Intermittent Data Connections Synthetic Power Line Communications Channel Generation with Autoencoders and GANs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1